

• Jack LaLanne

Pulling 70 boats (various 1984 sources). Recent reference is:

Evans-Bye D. (2006) Go, Go Rescue Rangers *The Wet Gazette* 39: 23

Tuttle, D. (2006) Godfather of Fitness Still Going Strong at 91 *LE Magazine* <u>http://www.lef.org/magazine/</u> mag2006/aug2006_report_ <u>lalanne_01.htm</u>

Jack LaLanne (1994) *Current Biography* 55(10): 26 – 30

Ottu, Bob (1981) Look, Mom, I'm an Institution Sports Illustrated 55: 64 – 69

• Migration due to climactic changes

Pickford, M. (2002) Palaeoenvironments and hominoid evolution *Z. Morphol Anthro* 83(2-3): 337 - 348

Bobe, R. et al (2002) Faunal change, environmental variability and late Pliocene hominid evolution J. Human Evol. 42(4): 475 - 497

• 10 - 20 kilometer quote from Wrangham

Shaw, J. (March-April 2004) The Deadliest Sin *Harvard Magazine* p. 37

• Warty Hammer Orchid story

Alcock, J. (2006) An Enthusiasm for Orchids: Sex and Deception in Plant Evolution Oxford University Press (UK) pp. 27 – 28

• *H. erectus* migrations

Howell, FC (1996) Some thoughts on the study and interpretation of the human fossil record. In: Meikle WE et al Eds. Ciurrent issues in human evolution San Fransisco; California Academy of Sciences, Memoir 21: 1 – 38

Lewin, R. (2005) Human Evolution: An Illustrated Introduction Blackwell Publishing Ltd (UK) pp. 187 - 199

• *H. sapien* migrations

Stringer, C. (2002) Modern human origins: progress and prospects *Phil Trans R Soci Lond B* 357: 563 -579

Down to Argentina

Dalton, R. (2006) Caveman DNA hints at map of migration *Nature* 436: 162 • The 25-mile figure

Bryson, Bill (2003) A Short History of Nearly Everything Broadway Books (NY) p. 451 - 452

Tattersall, Ian (1993) The Human Odyssey: Four Million years of Human Evolution New York: Prentice Hall

• Presence or absence of sedentary lifestyle predicts quality of aging (question 1)

Stewart, KJ (2005) Physical activity and aging Ann NY Acad Sci 1055: 193 – 206

Ory MG and Cox DM (1994) Forging ahead: Linking health and behavior to improve quality of life in older people Social Indicators Res (vol?): 89 - 120

Shaw, J. (March-April 2004) The Deadliest Sin *Harvard Magazine* p. 35 - 36

• Exercisers have more cognitive vitality (question 2)

Churchill, JD *et al* (2002) Exercise, experience and the aging brain *Neurobiol Aging* 23: 941 - 955

Emry CF *et al* (1994) Relationships among age, exercise, health and cognitive function in a British sample *Gerontology* 35: 378 - 385

Clarkson-Smith L and Hartley A (1989) Relationships between physical exercise and cognitive abilities in older adults *Psychol Aging* 4: 183 – 189

BRAIN RULES by JOHN MEDINA ~ References ~ 1

• Not all cognitions are sensitive (question 2)

Churchill, JD *et al* (2002) Exercise, experience and the aging brain *Neurobiol Aging* 23: 941 – 955

• Some people show no benefit at all (question 2)

Bouchard C (2004) Reported at the Australian Health and medical Research Congress in Sydney, Australia <u>http://www.newscientist.com/news/</u> <u>news.jsp?id=ns99996735</u>

• Intervention studies turn couch potatoes into Frank Lloyd Wright (question 3)

Cotman CW and Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity *Trends in Neuroscience* 25: 295 - 301

Dustman, RE *et al* (1984) Aerobic exercise training and improved neurophysiological function of older adults *Neurobiol Aging* 5: 35 – 42

• School aged children (question 3)

Kubota *et al* (2001) <u>http://nootropics.com/exercise/</u> <u>index.html</u>

• How much do you need? - general data (question 4)

Tomporowski, PD (2003) Effects of acute bouts of exercise on cognition *Acta Psychol (Amst)* 112: 297 – 324 Schmidt, WD (2001) Effects of long versus short bout exercise on fitness and weight loss in overweight females. J. of Am Col of Nutrit 20: 494 - 501

• How much do you need? – walking data (question 4)

Weuve, J *et al* (2004) Physical activity, including walking, and cognitive function in older women JAMA 292: 1454 - 1461

• How much do you need? – leisure time data (question 4)

Rovio, S *et al* (2005) Physical activity, including walking, and cognitive function in older women *Lancet Neurol* 4: 690 – 701

• How much do you need? – fidgeting data (question 4)

Levine JA *et al* (2005) Interindividual variation in posture allocation: possible role in human obesity *Science* 307: 584 - 586

• Risk of dementia and Alzheimer's cut in half – general data (question 5)

Rovio, S. *et al* (2005) Leisure-time physical activity at midlife and the risk of dementia and Alzheimer's disease *Lancet Neurology* 4: 705 – 711

Verghese, J *et al* (2003) Leisure activities and the risk of dementia in the elderly N Engl J Med 348: 2508 – 2516

• Effects of exercise on depression (question 5)

Penninx, BW et al (2002) Exercise and depressive symptoms J. Gerontology Series B: Psychological Sciences and Social Sciences 57: 124 - 132

Babyak MA *et al* (2000) Exercise treatment for major depression: maintenance of therapeutic benefit at 10 months *Psychosom Med* 62: 633 - 638

North TC *et al* (1990) Effect of exercise on depression *Exer and Sport Sci Rev* 18: 379 - 415

• Effects of exercise on middle aged populations (question 6)

Richards M *et al* (2003) Does active leisure protect cognition? Evidence from a national birth cohort *Soc Sci Med* 56: 758 - 792

Singh-Manoux, A *et al* (2005) Effects of physical activity on cognitive function in middle age: evidence from the Whitehall II prospective cohort study *Am J of Public Health* 95: 2252 - 2258

• Effects of exercise on school aged populations brains and their academic outcomes (questions 6 & 7)

Strong WB et al (2005) Evidence based physical activity for school-age youth J. Pediatrics 146: 732 - 737

Taras, H (2005) Physical activity and student performance at school J. Sch Health 75: 214 - 218

Hillman, C & Buck, S (2004) Physical fitness and cognitive function in healthy pre-adolescent children

Presented at the annual meeting of the Society of Psychophysiological Research in Sante Fe, NM Oct. 20 -24

http://www.eurekalert.org/pub releases/2004-10/uoia-pfc101904. php

Summerford, C. (2001) What is the impact of exercise on brain function for academic learning? *Teaching Elementary Physical Education* 12: 6-8.

Dwyer, T., *et al* (2001) Relations of academic performance to physical activity and fitness in children. *Pediatric Exercise Science*, 13: 225-237

Tremblay, M. S., Inman, J. W., & Willms, J. D. (2000). The relationship between physical activity, self-esteem, and academic achievement in 12 year old children. *Pediatric Exercise Science*, 12 (3), 312–323.

Keays JJ & Allison KR (1995) The effects of regular moderate to vigorous physical activity on student outcomes: a review *Can J. Public Health* 86: 62 - 65

GRUMP FACTOR STATING

Sibley B. & Etnier J. (2003) The Relationship between Physical Activity and Cognition in Children: a meta-analysis. Pediatric Exercise Science, 15: 243-256.

• Competitive eating circuit records taken from <u>www.ifoce.com</u> and:

Fagone, J. (2006) Horsemen of the Esophagus: Competitive Eating and the Big Fat American Dream Crown, Publishers (NY)

• What blood does (general reference)

Tortora GJ & Anagnostakos NP Principles of Anatomy and Physiology Harper & Row, Publishers (NY) pp. 440 – 459

• Energy requirements of the brain – overall and carb effects

Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients J Nutr Health Aging 10: 386 – 399

Raichle, ME (2006) The brain's dark energy *Science* 314: 1249 - 1250

• John Loudon McAdam story

Mokyr, J (1998) The British Industrial Revolution: An Economic Perspective Westview Press (UK)

• Increase in cerebral blood flow story

Doering TJ *et al* (1998) Passive and active exercises increase cerebral blood flow velocity in young, healthy individuals *Am J Phys Med Rehab* 77: 490 - 493

• Nitric oxide story

Green DJ et al (2004) Effect of exercise training on endothelium-derived nitric oxide function in humans J. Physiol 561: 1 – 25

• BDNF and neurotransmitter story

Vaynman SS *et al* (2006) Exercise differentially regulates synaptic proteins associated to the function of BDNF *Brain Res* 1070: 124 - 130

Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity *Trends Neurosci* 25: 295 - 301

Berchtold NC *et al* (2002) Hippocampal brain-derived neurotrophic factor gene regulation by exercise and the medial septum *J. Neurosci Res* 68 (5): 511-521

Russo-Neustadt A *et al* (1999) Physical activity-antidepresssant treatment combination: impact on BDNF and behavior in an animal model *Behavi Brain Res* 120 10: 87-95

Kesslak JP *et al* (1998) Learning upregulates BDNF mRNA; a mechanism to facilitate encoding and circuit maintenance? *Behav Neurosci* 112 1012-1019

• Depression test

Barbour KA & Blumenthal JA (2005) Exercise training and depression in older adults *Neurobiol Aging* 26 (suppl 1): 119 -123

• Ben Hogan's comeback

Dodson, J. (2004) Ben Hogan: An American Life Doubleday (NY)

All Yancey quotes from an NPR interview done by Patricia Nighmond on August 31st, 2006, and the show Morning Edition.

Dodson, J. (2004) Ben Hogan: An American Life Doubleday (NY)

• Supplemental oxygen experiment

Scholey, AB *et al* (1999) Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults *Physiol & Behav* 783 - 789

SUPPORTING REFS

YOUNG PEOPLE

Bammann, K; Peplies, J; Sjostrom, M; Lissner, L; Henauw, S; Galli, C; Iacoviello, L; Krogh, V; Marild, S. & Pigeot, I. (2006). Assessment of diet, physical activity and biological, social and environmental factors in a multi-centre European project on diet- and lifestyle-related disorders in children (IDEFICS). *Journal of Public Health.* 14 (5): 279-289.

Blundell, J. E.; King, N. A.; Bryant, E. (2006). Interactions among physical activity, food choice, and appetite control: health messages in physical activity and diet. *Symposiasociety for the study of human biology* 44: 135-148.

Bray, S. & Kwan, M. (2006). Physical activity is associated with better health and psychological well-being during transition to university life. *Journal of American College Health*. 55 (2): 77-82. Cale, L.; Harris, J. (2006). Schoolbased physical activity interventions: effectiveness, trends, issues, implications and recommendations for practice. *Sport Education and Society*.11 (4): 401-420.

Cason, K. L.; Logan, B. N. (2006). Educational intervention improves 4th-grade schoolchildren's nutrition and physical activity knowledge and behaviors. *Topics in Clinical Nutrition*. 21 (3): 234-240.

Cooper, A. & Page, A. (2006). Childhood obesity, physical activity, and the environment. *Symposiasociety for the study of human biology* 44: 119-134.

Dodge, T & Jaccard, J. (2006). The effect of high school sports participation on the use of performance-enhancing substances in young adulthood. *Journal of Adolescent Health*, 39 (3): 367-373.

Flohr, J; Todd, M. & Tudor-Locke, C. (2006). Pedometer-assessed physical activity in young adolescents. *Research Quarterly for Exercise and Sport.* 77 (3): 309-315.

Foster, L. & Page, A. (2006). Selfperceptions and physical activity behavior of obese young people. *Symposia- society for the study of human biology* 44: 51-64.

Harrison, M; Burns, C; McGuinness, M; Heslin, J. & Murphy, N. (2006).

Influence of a health education intervention on physical activity and screen time in primary school children: `Switch Off-Get Active.' *Journal of Science and Medicine in Sport.* 9 (5): 388-394. Hughes, A; Henderson, A; Ortiz-Rodriguez, V; Artinou, M. & Reilly, J.

(2006). Habitual physical activity and sedentary behaviour in a clinical sample of obese children. *International Journal of Obesity*. 30 (10): 1494-1500.

Lubans, D. & Sylva, K. (2006). Controlled evaluation of a physical activity intervention for senior school students: Effects of the lifetime activity program. *Journal of Sport and Exercise Psychology*. 28 (3): 252-268.

Naylor, P; Macdonald, H; Zebedee, J; Reed, K. & McKay, H. (2006). Lessons learned from Action Schools! BC-An `active school' model to promote physical activity in elementary schools. *Journal of Science and Medicine in Sport.* 9 (5): 413-423.

Nelson, M. C. & Gordon-Larsen, P. (2006). Adolescent physical activity and risk behaviors. *Pediatrics*. 117; (4): 1281-1290.

Pabayo, R; O'Loughlin, J; Gauvin, L; Paradis, G. & Gray-Donald, K. (2006).

Effect of a ban on extracurricular sports activities by secondary school teachers on physical activity levels of adolescents: A multilevel analysis. *Health Education and Behavior*. 33 (5): 690-702.

Pate, R; Davis, M; Robinson, T; Stone, E.; McKenzie, T. & Young, J. (2006). Promoting physical activity in children and youth: a leadership role for schools: a scientific statement from the American Heart Association council on nutrition, physical activity, and metabolism (physical activity committee) in collaboration with the councils on cardiovascular disease in the young and cardiovascular nursing. *Circulation.* 114 (11): 1214-1224.

Regan, F. & Betts, P. (2006). A brief review of the health consequences of childhood obesity. *Symposia- society for the study of human biology* 44: 25-38.

Rowlands, A. V. & Hughes, D. (2006). Variability of physical activity patterns by type of day and season in 8-10-year-old boys. *Research Quarterly for Exercise and Sport.* 77 (3): 391-395.

Ruiz, J; Ortega, F; Gutierrez, A; Meusel, D; Sjostrom, M. & Castillo,

M. (2006). Health-related fitness assessment in childhood and adolescence: a European approach based on the AVENA, EYHS and HELENA studies. *Journal of Public Health.* 14 (5): 269-277.

Sallis, J. F.; Glanz, K. (2006). The role of built environments in physical activity, eating, and obesity in childhood. *Future of Children*. 16 (1): 89-108.

Shi, Z; Lien, N; Nirmal Kumar, B. and Holmboe-Ottesen, G. (2006). Physical activity and associated socio-demographic factors among school adolescents in Jiangsu Province, China. *Preventive Medicine*, 43 (3): 218-221.

Wilson, D. K; Griffin, S; Saunders, R. P; Evans, A; Mixon, G; Wright, M;

Beasley, A; Umstattd, M; Lattimore, D. & Watts, A. (2006). Formative

evaluation of a motivational intervention for increasing physical activity in underserved youth. *Evaluation and Program Planning.* 29 (3): 260-268.

Wong, S. L.; Leatherdale, S. T.; Manske, S. R. (2006). Reliability and validity of a school-based physical activity questionnaire. *Medicine and Science in Sports and Exercise*. 38 (9): 1593-1600.

Zeigler, E. F. (2006). What the field of physical (activity) education should do in the immediate future. *International Council for Health Physical Education Recreation Sport and Dance.* 42 (2): 35-39.

ADULTS

Anderson, A; Murphy, M; Murtagh, E. & Nevill, A. (2006). An 8-week randomized controlled trial on the effects of brisk walking, and brisk walking with abdominal electrical muscle stimulation on anthropometric, body composition, and self-perception measures in sedentary adult women. *Psychology of Sport and Exercise*, 7 (5): 437-451.

Badland, H. & Schofield, G. (2006). Test-retest reliability of a survey to measure transport-related physical activity in adults. *Research Quarterly for Exercise and Sport.* 77 (3): 386-390.

Felton, G. M.; Tudor-Locke, C.; Burkett, L. (2006). Reliability of pedometer-determined free-living physical activity data in college women. *Research Quarterly for Exercise and Sport.* 77 (3): 304-308.

Olson, T; Dengel, D; Leon, A. & Schmitz, K. (2006). Moderate

resistance training and vascular health in overweight women. *Medicine & Science in Sports & Exercise*. 38(9):1558-1564.

OLDER ADULTS

Bugg, J; DeLosh, E. & Clegg, B. (2006). Physical activity moderates time-of-day differences in older adults' working memory performance. *Experimental Aging Research.* 32 (4): 431-446.

Clary, S; Barnes, C; Bemben, D; Knehans, A. and Bemben, M. (2006). Effects of ballates, step aerobics, and walking on balance in women aged 50-75 years. *Journal of Sports Science and Medicine*. 5: 390 -399.

Collins, C. & Benedict, J. (2006). Evaluation of a community-based health promotion program for the elderly: Lessons from Seniors CAN. *American Journal of Health Promotion*. 21 (1): 45-48.

Croteau, K. & Richeson, N. (2006). A matter of health: using pedometers to increase the physical activity of older adults. *Activities Adaptation and Aging*. 30 (2): 37-48.

Dinan, S.; Lenihan, P.; Tenn, T.; Iliffe, S. (2006). Is the promotion of physical activity in vulnerable older people feasible and effective in general practice? *British Journal of General Practice*. 56 (531): 791-793.

Hooker, S. & Cirill, L. (2006). Evaluation of community coalitions ability to create safe, effective exercise classes for older adults. *Evaluation and Program Planning*. 29 (2006) 242–250.

BRAIN RULES by JOHN MEDINA ~ References ~ 5

Ichinoseki-Sekine, N; Kuwae, Y; Higashi, Y; Fujimoto, T; Sekine, M; Tamura, T. (2006). Improving the accuracy of pedometer used by the elderly with the FFT algorithm. *Medicine & Science in Sports & Exercise*. 38 (9):1674-1681.

Kramer, A; Erickson, K. & Colcombe, S. (2006). Exercise, cognition, and the aging brain. *Journal of Applied Physiology* 101: 1237-1242.

Topolski, T; LoGerfo, J; Patrick, D; Williams, B; Walwick, J. & Patrick, M. (2006). The rapid assessment of physical activity (RAPA) among older adults. *Prevention of Chronic Diseases*. 3 (4): Available online at: <u>http://www.cdc.gov/pcd/</u> <u>issues/2006/oct/o6_0001.htm</u>

Tsang, H; Fung, K; Chan, A; Lee, G. & Chan, F. (2006). Effect of a qigong exercise programme on elderly with depression. *International Journal of Geriatric Psychiatry*. 21 (9): 890-897.

WORKPLACE HEALTH

Herman, C; Musich, S; Lu, C; Sill, S; Young, J. & Edington, D. (2006). Effectiveness of an incentive-based online physical activity intervention onemployee health status. *Journal of Occupational and Environmental Medicine.* 48 (9): 889-895.

PRIMARY CARE AND MEDICAL CONDITIONS

Adams, A; MacKenzie, R; Lemon, J; Brickley, G. & Seddon, P. (2006).

Physical activity and fitness in children with Cystic Fibrosis. *Journal of Cystic Fibrosis*. 5 (Sup. 1): S80-362.

Araiza, P; Hewes, H; Gashetewa,

C; Vella, C. & Burge, M. (2006). Efficacy of a pedometer-based physical activity program on parameters of diabetes control in type 2 diabetes mellitus. *Metabolism*. 55 (10): 1382-1387.

Donahue, K; Mielenz, T; Sloane, P; Callahan, L. & Devellis, R. (2006). Identifying supports and barriers to physical activity in patients at risk for diabetes. *Preventing Chronic Dis*eases 3 (4). Available online from: <u>http://www.cdc.gov/pcd/</u> issues/2006/oct/06_0011.htm.

LaMonte, M. & Blair, S. (2006). Physical activity, cardiorespiratory fitness, and adiposity: contributions to disease risk. *Current Opinion in Clinical Nutrition and Metabolic Care.* 9 (5): 540-546.

GENERAL PHYSICAL ACTIVITY AND HEALTH

Ainsworth, B. E.; Macera, C. A.; Jones, D. A.; Reis, J. P.; Addy, C. L.; Bowles,

H. R.; Kohl, H. W. (2006). Comparison of the 2001 BRFSS and the IPAQ physical activity questionnaires. *Medicine and Science in Sports and Exercise*. 38 (9): 1584-1592.

Bauman, A. (2006). Physical activity measurement- a primer for health promotion. *Promotion and Education*. 13 (2): 92-103.

Bauman, A; Nelson, D; Pratt, M; Matsudo, V. & Schoeppe, S. (2006).

Dissemination of physical activity evidence, programs, policies, and surveillance in the international public health arena. *American Journal* of Preventive Medicine. 31 (4) supp: 57-65.

Bennett, G; Wolin, K; Viswanath, K; Askew, S; Puleo, E. & Emmons, K. (2006). Television viewing and pedometer-determined physical activity among multiethnic residents of low-income housing. *American Journal of Public Health*. 96 (9): 1681-1685.

Blundell, J; King, N. & Bryant, E. (2006). Interactions among physical activity, food choice, and appetite control: health messages in physical activity and diet. *Symposia- Society for the Study of Human Biology*. 44 : 135-148.

Brown, W. J.; Salmon, J.; Burton, N. W. (2006). People, places and physical activity. *Journal of Science and Medicine in Sport*. 9 (5): 353-356.

Bryan, S; Tremblay, M; Perez, C; Ardern, C. & Katzmarzyk, P. (2006). Physical Activity and Ethnicity: Evidence from the Canadian Community Health Survey. *Canadian Journal of Public Health.* 97 (4): 271-276.

Bull, F. C. (2006). Implementing national population-based action on physical activity: challenges for action and opportunities for international collaboration. *Promotion and Education*. 13 (2): 127-132.

Buller, D. B. (2006). Diffusion and dissemination of physical activity recommendations and programs to world populations. *American Journal of Preventive Medicine*. 31 (4): supp 1-4.

Cavill, N. (2006). An evidence-

based approach to physical activity promotion and policy development in Europe: contrasting case studies. *Promotion and Education*. 13 (2): 104-111

Dunn, A. & Bettinghaus, E. (2006). Diffusion and dissemination for increasing physical activity in world populations. *American Journal of Preventive Medicine*. 31 (4) supp: 94-96.

Dunton, G. & Schneider, M. Perceived barriers to walking for physical activity. (2006). *Prevention of Chronic Diseases*. 3 (4) Available online from: <u>http://www.cdc.gov/</u> <u>pcd/issues/2006/oct/05_0185.htm</u>.

Kelly, C; Hoehner, C; Baker, E; Brennan Ramirez, L. & Brownson, R. (2006). Promoting physical activity in communities: Approaches for successful evaluation of programs and policies. *Evaluation and Program Planning*. 29 (3): 280-292.

Gamez, R. (2006). Muevete Bogota: Promoting physical activity with a network of partner companies. *Promotion and Education*. 13 (2): 138-143.

Green, L; Orleans, C; Ottoson, J; Cameron, R; Pierce, J. &

Bettinghaus, E. (2006). Inferring strategies for disseminating physical activity policies, programs, and practices from the successes of tobacco control. *American Journal of Preventive Medicine*. 31 (4) supp: 66-81.

Hagstromer, M; Bergman, P; Bauman, A. & Sjostrom, M. (2006). The international prevalence study (IPS): health-enhancing physical activity in Sweden. *Journal of Public Health*. 14 (5): 301-308.

Hagstromer, M; Oja, P. & Sjostrom, M. (2006). The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. *Public Health Nutrition*. 9 (6): 755-762.

Kirsten, W; Bauman, A. & Pratt, M. (2006). Promoting physical activity globally for population health. *Promotion and Education*. 13 (2): 90-91.

Ko, G. T. C. (2006). Both obesity and lack of physical activity are associated with a less favorable health-related quality of life in Hong Kong Chinese. *American Journal of Health Promotion.* 21 (1): 49-52.

Kottke, T. E.; Pronk, N. P. (2006). Physical Activity. *American Journal of Preventive Medicine*. 31 (4) supp: 8-10.

Lamarre, M.-C. & Pratt, M. (2006). Physical activity and health promotion. *Promotion and Education*. 13 (2): 88-89.

Lucumí, D; Sarmiento, O; Forero, R; Gomez, L. and Espinosa, G. (2006) Community intervention to promote consumption of fruits and vegetables, smoke-free homes, and physical activity among home caregivers in Bogotá, Colombia. *Prevention of Chronic Diseases*. 3 (4) Serial available online: <u>http://</u> www.cdc.gov/pcd/issues/2006/ oct/06_0014.htm.

Maddock, J. (2006). Evaluation of community-based physical activity programs. *Evaluation and Program Planning*. 29 (3): 240-241. Manca, M. (2006). Physical activity exercise and cardiovascular health. British *Journal of Sports Medicine*. 40 (10): 820.

Matsudo, S. & Matsudo, V. (2006). Coalitions and networks: facilitating global physical activity promotion. *Promotion and Education*. 13 (2): 133-137.

Mummery, W. K.; Schofield, G.; Hinchliffe, A.; Joyner, K.; Brown, W. (2006).

Dissemination of a community-based physical activity project: The case of 10,000 steps. *Journal of Science and Medicine in Sport.* 9 (5): 424-430.

Powell, L; Slater, S; Chaloupka, F. & Harper, D. (2006). Availability of physical activity-related facilities and neighbourhood demographic and socioeconomic characteristics: a national study. *American Journal of Public Health* 96 (9): 1676-1680.

Proper, K; Heymans, M; Paw, M; van Sluijs, E; van Poppel, M. & van Mechelen, W. (2006). Promoting physical activity with people in different places-A Dutch perspective. *Journal of Science and Medicine in Sport.* 9 (5): 371-377.

Puetz, T. W. (2006). Physical activity and feelings of energy and fatigue: Epidemiological evidence. *Sports Medicine –Auckland*. 36 (9). 767-780.

Rabin, B; Brownson, R; Kerner, J & Glasgow, R. (2006). Methodologic challenges in disseminating evidence-based interventions to promote physical activity. *American Journal of Preventive Medicine*. 31 (4) supp: 24-34.

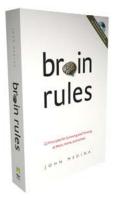
BRAIN RULES by JOHN MEDINA ~ References ~ 7

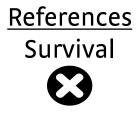
Shilton, T. (2006). Advocacy for physical activity- from evidence to influence. *Promotion and Education*. 13 (2): 118-126.

Sjostrom, M; Oja, P.; Hagstromer, M; Smith, B. J.; Bauman, A. (2006). Health-enhancing physical activity across European Union countries: the Eurobarometer study. *Journal of Public Health*. 14 (5): 291-300

Slotterback, C; Leeman, H. & Oakes, M. (2006). No Pain, No Gain: Perceptions of Calorie Expenditures of Exercise and Daily Activities. *Current Psychology -New Brunswick*. 25 (1): 28-41.

Swain, D. P. (2006). Moderate- or vigorous-intensity exercise: What should we prescribe? *ACMS Health and Fitness Journal*. 10 (5): 7-11.


Tremblay, M; Bryan, S; Perez, C; Ardern, C; & Katzmarzyk, P. (2006). Physical activity and immigrant status: Evidence from the Canadian Community Health Survey. *Canadian Journal of Public Health.* 97 (4): 277-285.


Valente, T. W. (2006). Need, demand, and external validity in dissemination of physical activity programs. *American Journal of Preventive Medicine*. 31 (4) supp: 5-7.

Williams, D; Papandonatos, G; Napolitano, M; Lewis, B; Whiteley, J. & Marcus, B. (2006). Perceived enjoyment moderates the efficacy of an individually tailored physical activity intervention. *Journal of Sport and Exercise Psychology*. 28 (3): 300-309.

Yancey, A; Ory, M. & Davis, S. (2006). Dissemination of physical

activity promotion interventions in underserved populations. *American Journal of Preventive Medicine*. 31 (4) supp: 82-91.

•) General anatomy

Nolte, J (1999) The Human Brain: An Introduction to Functional Anatomy, (4th Edition) Mosby Press (St. Louis)

•) Evolutionary context of anatomy (lizard brain, etc)

Nitrecki M & Nitrecki D, eds. (1994) Origins of Anatomically Modern Humans New York: Plenum Press

•) Phineas Gage Ratiu P, Talos et al (2004) The tale of Phineas Gage, digitally remastered *Journal of Neurotrauma* 21 (5): 637-43

•) Judy DeLoache's bio <u>http://www.faculty.virginia.edu/</u> <u>deloache/vita.pdf</u>

•) Dual representation

DeLoache, JD (2004) Becoming symbol-minded *Trends in Cognitive Sciences* 8(2):

66 - 70

DeLoache *et al* (2004) Scale errors offer evidence for a perception-action dissociation early in life *Science* 304: 1027 - 1029

•) Tool usage

Arp, R (2006) The environments of our hominid ancestors, tool-usage and scenario visualization *Biol & Phil* 21: 95 - 117

•) Human migration

Stringer CB (2003) Human evolution: out of Ethopia *Nature* 423: 692 - 695

Steudel, KL (1994) Locomotor energetics and hominid evolution *Evolutionary Anthro* 3: 42 - 48

•) 40,000 year explosion

Culotta, E. *et al* (2001) Paleolithic technology and human evolution *Science* 291: p. 1748 - 1753

•) Variability Selection Theory

Pickford, M. (2002) Palaeoenvironments and hominoid evolution *Z. Morphol Anthro* 83(2-3): 337 - 348

Bobe, R. et al (2002) Faunal change, environmental variability and late Pliocene hominin evolution *J. Human Evol.* 42(4): 475 - 497

Potts, R (1998) Environmental hypotheses of hominin evolution *Am J Phys Anthro* 27: 93 – 136 (suppl)

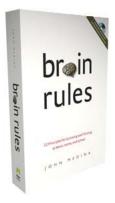
•) Theory of Mind (ToM) – definitions and neuroanatomy

a) Definition Smith, P.K. et al (1998) Understanding Children's Development Blackwell Publishers, p. 397 - 411

b) Neuroanatomy Siegal, M. and R. Varley (2002) Neural systems involved in Theory of Mind *Nature Reviews Neuroscience* 3: 463 -471

•) Primates (chimps) that are adept at building and maintaining alliances are dominant and more reproductively successful.

Dunbar RJM (1998) The social brain hypothesis *Evol Anthropol* 6: 178 - 190


Lewin, R. (1999) Human Evolution: an Illustrated Introduction Blackwell Science, p. 193

•) The cognitive ability to form Theory of Mind may have given rise to our other "human-specific" intellectual talents ("extensibility")

Hobson P. (2002) The Cradle of Thought Macmillan Ltd, p. 61 – 94

Lewin, R. (1999) Human Evolution: an Illustrated Introduction Blackwell Science, p. 192 - 194

Humphrey, N. (2003) The Inner Eye: Social Intelligence in Evolution Oxford University Press

References Wiring

•) Michael Jordan

Adams, S. (2003) *Michael Jordan* (Sports Heroes and Legends series) Barnes & Noble Books (NY)

•) Ken Griffey's career statistics and analysis <u>www.baseball-Reference.com</u>

•) Ramon y Cajal

Everdell, WR (1998) *The First Moderns* University of Chicago Press (Chicago, Ill)

Ramon y Cajal, Santiago (1937) Recuerdos de mi Vida MIT Press (Boston)

• Alfred Nobel

Schuck H & Sohlman, R (1929) The Life of Alfred Nobel William Heineman (London)

• Eric Kandel

Kandel, ER (2006) In Search of Memory: The Emergence of a New Science of Mind W.W. Norton & Co (NY)

• Neurons move when learning things

Lamprecht, R & LeDoux, J Structural plasticity and memory *Nature Reviews Neuroscience* 5: 45 -54

• Neurons swell when learning things

Fikova, E. & Anderson, CL(1975) Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer *Exp Neurol* 74: 621 - 627

• Neurons "split" when learning things

Geinisman, Y (2001) Associative learning elicits the formation of multiple-synapse boutons J Neurosci 21: 5568 – 5573

• Darwin's work

Darwin, C. (1868) The Variation of Animals and Plants Under Domestication Judd & Co (NY)

•) Malacarne's work

Roseanzweig, MR (1996) Aspects of the search for neural mechanisms of memory Ann Rev of Psych 47: quoted from

Malacarne, V. (1793) J. de Physique (Paris) 43: 73

•) Violins

Altenmuller, E. (2003) Focal dystonia: advances in brain imaging and understanding of fine motor control in musicians *Hand Clin* 19: 1 - 16

•) The mentioned construction of two to four decades refers to the myelin sheathing development. A handy reference:

Anderson, SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity Neurosi and Biobheav Rev 27: 3 – 18

Ge, Y *et al* (2002) Age-related total gray matter and white matter changes in normal adult brain. Part II: Quantitative magnetizaiton transfer ration histogram analysis *Am J of Neurorad* 23: 1334 - 1341

•) Housekeeping functions

Damasio, A (2001) Some Notes on Brain, Imagination and Creativity In *The Origins of Creativity* (Pfenninger KH and Shubik, VR, eds) Oxford Universiity Press (Oxford, UK)

•) Cataracts

Bowering ER, Maurer D, Lewis TL, Brent HP. **(1997)** Constriction of the visual field of children after early visual deprivation. *J Pediatr Ophthalmol Strabismus*. Nov-Dec;34(6):347-56.

Birch EE, Stager D, Leffler J, Weakley D. (1998) Early treatment of congenital unilateral cataract minimizes unequal competition. *Invest Ophthalmol Vis Sci.* Aug;39(9):1560-6

•) Jennifer Aniston neuron

Quiroga, RQ *et al* (2005) Invariant visual representation by single neurons in the human brain *Nature* 435: 1102 - 1107

•) Dutch Hunger (winter) results

Lumey, L (1992) Decreased birth weights in infants after maternal in utero exposure to the Dutch famine of 1944 – 1945 *Epidemiology* 6: 240

Sapolsky, R (2004) • Why Zebras Don't Get Ulcers, Owl Books (3rd Edition) p. 99 - 100

•) Eric Kandel quote

Kandel, E. (1999) The Scientific American Book of the Brain The Lyons Press p. 153

•) Howard Gardner

New York Times Magazine, 3/11/07 Quoted in: <u>www.edge.org/3rd_</u> <u>culture/gardner/gardner_p3.html</u>

Schaler, J (2006) Howard Gardner Under Fire: The Rebel Psychologist Faces His Critics Open Court Publishing Co (Illinois, USA)

Gardner, H. (1983) Multiple Intelligences: the Theory in Practice Basic Books (NY)

•) A terrific discussion on the mechanics of electrical stimulation mapping

Calvin, WH & Ojemann, GA (1994) Conversations with Neil's Brain Perseus Books (Reading, Mass) pp. 1 - 17

•) Correlations of CLA patterns with language (and demonstration of stability as well as individuality)

Ojemann G & Schoenfield-McNeill J (1999) Activity of neurons in human temporal cortex during identification and memory for names and words J. Neurosci 109: 5674 - 5682

Ojemann G et al (1989) Cortical language localization in left, dominant hemisphere, an electrical stimulation mapping investigation in 117 patients J. Neurosurg 71: 316 – 326

•) Double-hump – childhood brain development

Huttenlocher PR and Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex J. of Comp. Neuro. <u>387</u>: 167 – 178

•) Double-hump - adolescence

Giedd JN *et al* (1999) Brain development during childhood and adolescence: a longitudinal MRI study *Nature Neuro* 2(10): 861 - 863

•) General reference on brain development

Sewell, ER *et al* (2004) Mappig changes in the human cortex throughout the span of life *Neuroscientist* 10(4): 372 - 392

•) Pre-loaded software of babies

Gopnik, A.et al (2000) The Scientist in the Crib William Morrow, p. 60 – 75; p. 85 – 91

•) How culture influences thinking

Asian/American Views (2006) Science <u>311</u>: 305 Describes work published in

Miyamoto, U et al (2006) Culture and the physical environment *Psychol. Sci* 17: 113 (2006)

•) Reading and individualized instruction

Connor, CM *et al* (2007) Algorithm-guided individualized reading instruction Science 315: 464 - 465


All quotations from George Ojemann are transcribed directly from the videotaped television program of the following meeting:

"A Brain on Our Resources: the Impact of Neural Research on the 21st Century Classroom" (1999)

Presentations by Professors John Medina, George Ojemann, Patricia Kuhl, Jaimie Diaz and Deborah McCutchen Part of the *Strategies for the Future* series University of Washington Office of Educational Partnerships

•) Reading variability studies using testing and mapping procedures

Ojemann, G (1989) Some brain mechanisms for reading. In *Brain and Reading* (Curt von Euler, ed) (Macmillan, NY), p. 47 – 59

Confirming the 10-minute period by peer-review

Hartley, J & Davies IK (1978) Note-taking: a critical review Programmed Learning and Educational Technology 15: 207 - 224

100 years

Renninger, KA (1990) Childrens' play interests, representations, and activity *Knowing and remembering in young children*, R. Fivush & J Hudson (Eds.) Emory Cognition Series (Vol. III) Cambridge, MA, Cambridge University Press pp. 127 – 165

Reading retention

Hidi, S & Baird, W (1988) Strategies for increasing text-based interest and student's recall of expository text *Reading Research Quarterly* 23: 465 - 483

Improved writing comment Hid, S & McLaren, J (1990) The effect of topic and theme interestingness on the production of school expositions. In Learning and instruction 2(2): 295 - 308, H, Mandl et al (Eds.) Oxford: Pergamon

Math and science

Schiefele, U et al (1992) Interest as a predictor of academic achievement: a meta-analysis of research In *The Role of Interest in Learning and Development* Renninger et al (Eds.) Lawrence Erlbaum Associ (Hillsdale, NJ) pp. 183 – 212

All ages

Renninger, KA (1992) Individual interest and development: implications for theory and practice. In *The Role of Interest in Learning and Development* Renninger et al (Eds.) Lawrence Erlbaum Associ (Hillsdale, NJ) pp. 359 - 396

Attentional states linked to consciousness (and that they may be the same thing)

Ratey, JJ (2002) A User's Guide to the Brain Vintage Books (NY) pp. 110 – 114

The failures of the Tucson Consciousness Conference www.consciousness.arizona.edu/ tucson2006.htm

Ratey, JJ (2002) A User's Guide to the Brain Vintage Books (NY) pp. 145

Operations, anesthesia and attention

Carianai, P (2000) Anesthesia, neural information processing, and conscious awareness Conscious Cogn 9: 387 - 395

Cheek DB (1964) Further evidence of persistence of hearing under chemo-anesthesia: detaile case report *Am J Clin Hypn* 14: 55 - 59

Diamond, J (2005) Guns, Germs & Steel W.W. Norton (NY)

Asian vs. American perceptions

Psycho Sci 17: 113 (2006)

PHeine, SJ & norenzayan A (2006) Toward a psychological science for a cultural species *Persp on Psych Sci* 1: 251

Attentional states linked to memory

Summerfield JJ *et al* (2006) Orienting attention based on longterm memory experience *Neuron* 49: 905 - 916

The woman who couldn't see anything in the left

Sacks, O. (1998) The Man Who Mistook His Wife for a Hat Touchstone Press p. 77

The idea of hemispheric spotlight interactions

Weintraub S. et al (1996) Right-sided hemispatial neglect and bilateral cerebral lesions J. of Neuroo, Neurosurg & Psych 60: 34² - -344

Olshausen BA *et al* (1994) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information J. Neurosci 13: 4700 – 4719

Relationship between interest and attention

Shirey LL (1992) Importance, interest and selective attention In *The Role of Interest in Learning and Development* Renninger et al (Eds.) Lawrence Erlbaum Associ (Hillsdale, NJ) pp. 281 - 296

Mike Posner's Bio "A Tribute to Michael I. Posner" Steven Keele and Ulrich Mayr

Posner's model reviewed

Raz A and Buhle J. (2006) Typologies of attentional networks Nature Reviews Neuroscience 7: 367 – 379

Theories of executive control

Rubinstein, JS et al (2001) Executive control of cognitive processes in task switching J Exp Psych 27: 763 - 771

The David E. Meyer quote" Cole, W. *et al* (2006) The Multitasking Generation *Time* 167: 52

The steps of information processing

Braver, TS et al (2003) Neural mechanisms of transient and sustained cognitive control during task switching. *Neuron* 39:713-26. Crone, EA *et al* (2006) Neural evidence for dissociable components of task-switching. *Cereb Cortex* 16:475-86

Yeung, N et al (2006)

Between-task competition and cognitive control in task switching. *J Neurosci* 26:1429-38.

Rule activation

Rubinstein, JS et al (2001) Executive control of cognitive processes in task switching J Exp Psych 27: 763 - 797

Lo, CC & Wang, XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks *Nature Neuroscience* 9: 956 - 963

Effects of interruptions, length of time and error rates

Ramsey, NF et al (2003) Neurophysiological factors in human information processing capacity *Brain* 127: 517 - 525

Cole, W. *et al* (2006) The Multitasking Generation *Time* 167: 50 - 53

Czerwinski, M., Cutrell, E., & Horvitz, E. (2000). Instant Messaging and Interruption: Influence of Task Type on Performance. Proceedings of *OZCHI* 2000, 356-361

Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763-797

Monsell, S., & Driver, J. (Eds.) (2000). Attention and performance XVIII: Control of cognitive processes. Cambridge, MA: MIT Press Various cell phone references

Strayer, DL et al (2004) What do drivers fail to see when conversing on a cell phone? Proc of the Hum Fac and Erg Soci, 48th, Ann Mtg pp. 2213 – 2217

Redelmeier, DA & Tibshirani, RJ (1997) Association between cellularotelephone calls and motor vehicle collisions New England Journal of Medicine 336: 453 – 458

The 100-Car Naturalistic Driving Study Phase II – Results of the 100-Car Field Experiment NHTSA Crash Avoidance Research Technical Publications http://www-nrd. nhtsa.dot.gov/departments/nrd-12/pubs_rev.html

The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis of 100-Car Naturalistic Driving Study Data (This report will be posted at two locations) NHTSA Crash Avoidance Research Technical Publications http://www-nrd.nhtsa. dot.gov/departments/nrd-12/pubs_ rev.html

and Safety Implications of Driver Distraction When Using In-Vehicle Technologies http://www-nrd.nhtsa.dot. gov/departments/nrd-13/ DriverDistraction.html

Direct Line Insurance in the UK commissioned a study in driving simulators comparing drivers when they were legally drunk to these same drivers while using hand-held and hands-free mobile phones. Both phone uses showed greater driver impairment than being drunk. This is the first study to compare alcoholimpaired drivers with their own reaction times, etc., while sober and using mobile phones.

Talking on a mobile phone whilst driving is MORE dangerous than being drunk behind the wheel*

An ECS is the best processed information of any type (better encoded, better recalled)

LaBar KS and Cabeza R (2006) Cognitive neuroscience of emotional memory *Nature Reviews Neuroscience* 7: 54 – 64

The anatomy of an emotional memory (Executive, anterior cingulate and amygdala)

McGaugh, JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences Ann Rev Neurosci 27: 1 - 28

The positive effect of dopamine on human cognition

Nieoullon A & Coquerel A. (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition *Curr Opin Neurol* Suppl 2: S3 - 9

The brain pays attention to issues of survival and sex

LeDoux, J. (2002) Synaptic Self: Ho Our Brains Become Who We Are Viking Press (NY) pp. 320 - 321

The brain pays attention to "have I seen it before" cues

Turk-Browne N et al (2006) Linking implicit and explicit memory: common encoding factors and shared representations *Neuron* 49: 917 - 927

We pay strongest attention to the emotional components of memory

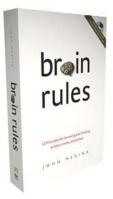
Dolcos, F et al (2004) Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events *Neuron* 42: 855 - 863

Emotional arousal is linked to gist preferences

Adolphs, R et al (2005) Amygdala damage impairs emotional memory for gist but not for details of complex stimuli. *Nature Neursci* 8: 512 – 518

Gist is normally processed over detail and may be what memory does best

Squire L & Kandel E (1999) *Memory* Scientific American Press (NY) p. 78


Gist emphasis a sign of mental health

Schacter, D. (2001) The Seven Sins of Memory: How the Mind Forgets and Remembers Houghton Mifflin Co (NY) p. 192

The amazing waiter

Ericsson, KA U Polson PG (1988) An experimental analysis of the mechanisms of a memory skill J of Ex Psych: Learning, Memory & Cogn 14: 305 – 316 Experts vs. novices

How Experts Differ From Novices in How People Learn (Bransford et al Eds) National Academy Press (Washington, DC) pp. 31 - 50

<u>References</u> Short-term memory

Kim Peek's astonishing skills

• <u>http://www.</u> <u>wisconsinmedicalsociety.org/savant/</u> <u>kimpeek.cfm</u>

• <u>http://skepdic.com/speedreading</u>. <u>html</u>

Peek, F. (1996) The Real Rain Man Harkness Publishing Cons (Salt Lake City, Utah)

Treffert, DA and Chrisensen DD (2006) Inside the mind of a savant Scientific American Mind June, 2006

Darold Treffert's quote

http://www.sciammind.com/article. cfm?articleID=000695C0-59E6-147C-89AA83414B7F0000

Ebbinghaus references

90% comment

Plucker, J. (20046) Hermann Ebbinghaus http://www.indiana.edu/~intell/

<u>ebbinghaus.shtml</u>

Ebbinghaus, H. (1964) Uber das Gedachtnis Untersuchungun Zure Experimentatellen Psychologie H.A. Ruger & C.E. Bussenius, Trans.) New York: Dover (Original work published in 1885)

Ways to organize memory (based on consciousness)

Squire L & Kandel E (1999) *Memory* Scientific American Press (NY) p. 15

The story of H.M.

Scoville WB & Milner, B (1957) Loss of recent memory after bilateral hippocampal lesions J. of Neurology, Neurosurgery and Psychiatry 20: 11 – 21

The neuroanatomy of memory (relationship between hippocampus and cortex)

Nolte, J. (1993) The Human Brain: An Introduction to its Functional Anatomy Mosby, Inc (St. Louis, Missouri) pp. 548 - 566

Ways to organize memory (based on neuroanatomy, especially H.M.)

LeDoux, J. (2002) Synaptic Self: Hwo Our Brains Become Who We Are Viking Press (NY) pp. 108 - 109

Oliver Sacks piano playing "Tom" Ramachandran, VS & Blaekeslee S. (1999) Phantoms in the Brain HarperCollins, (NY) p. 192

The brain is like a blender

Livingston, M & Hubel, D (1988) Segregation of form, color, movement and depth: anatomy, physiology and perception *Science* 240: 740 - 749

Robertson, LC (2003) Binding, spatial attention and perceptual awareness *Nature Reviews Neuroscience* 4(2): 93 – 102

The vowel story (subscription required): <u>http://www.nature.com/nature/</u> journal/v403/n6768/full/403428ao. <u>html</u>

Automatic vs. effortful encoding

Hasher L & Zacks RT (1984) Automatic and effortful processes in memory J. of Experimental Psychology General 198: 356 - 388

Hasher L & Zacks RT (1984) Automatic processing of fundamental information: the case of frequency of occurrence *American Psychologist* 39: 1372 - 1388

Mangels, JA (1997) Strategic processing and memory for temporal order in patients with frontal lobe lesions *Neuropsychology* 11: 207 – 221

Levels of processing

Craik FIM & Lockhart RS (1972) Levels of processing: a framework for memory research J. of Verbal Learning and Verbal Behavior 11: 671 - 684 Elaborate encoding provides greater memory

Craik FIM & Tulving, E (1975) Depth of processing and the retention of words in episodic memory J. of Experimental Psychology General 104: 268 - 294 Binding problem

Treisman A. (1996) The binding problem. *Curr Opin Neurobiol* 6(2):171-8

Balint's syndrome

Rizzo M, & Vecera SP. (2002) Psychoanatomical substrates of Balint's syndrome. J Neurol Neurosurg Psychiatry. 72(2):162-78

The structural letters test

Craik FIM & Tulving, E (1975) Depth of processing and the retention of words in episodic memory J. of Experimental Psychology General 104: 268 - 294

Memory appears to be stored in the same distributed assembly of brain structures that are initially engaged ... (this is a quote from Squire and Kandel, but see also Ledoux)

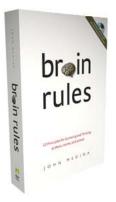
Squire L & Kandel E (1999) *Memory* Scientific American Press (NY) p. 72

LeDoux, J. (2002) Synaptic Self: Hwo Our Brains Become Who We Are Viking Press (NY) p. 107 The deep-sea divers experiment

Godden DR & Baddeley AD (1975) Context-dependent memory in two natural environments: on land and under water *British J. of Psych* 66: 325 - 332

Marijuana, laughing gas & mood Passer, MW & Smith RE (2001) Psychology: Frontiers and Applications McGraw Hill (NY) pp. 291 – 292

Elaborate rehearsal


Gabrielli JDE *et al* (1996) Functional magnetic resonance imaging of semantic memory processes in the frontal lobes *Psychological Science* 7: 278 – 283

The more examples, the better it is

Palmere, M *et al* (1983) Elaboration and recall of main ideas in prose J. of Education Psychology 75: 898 – 907

Context dependent

Grant, HM *et al* (1998) Context-dependent memory of meaningful material: information for students *Applied Cognitive Psychology* 12: 617 - 623

References Long-term memory

Darold Treffert's quote

http://www.sciammind.com/article. cfm?articleID=000695C0-59E6-147C-89AA83414B7F0000

Old loading dock metaphor

Passer, MW & Smith, RE (2001) Psychology: Frontiers and Applications McGraw Hill (NY) p. 278

The old model needed changing

Reisberg D. (1997) Cognition: Exploring the Science of Mind W. W. Norton (NY) p. 139

Miguel Najdorf's blindfolded chess games

• Schultz, D (2004) Fischer, Kasparov and the Others Chessdon Publishing (Highland Beach, Fl) P. 74

Working memory

Baddeley, AD (1998) Recent developments in working memory Current Opinion in Neurobiology 8: 234 – 238

Baddeley, AD (2000) Working memory: the interface between memory and cognition In. M.S. Gazzaniga (Ed.) *Cognitive Neuroscience: a Reader* Malden, MA: Blackwell

Baddeley, AD (2000) The episodic buffer: a new component of working memory? *Trendsi n Cognitive Sciences* 11: 417 -423

Structure of long-term memory (many interactive systems, including semantic and episodic subtypes)

Squire, L. (2004) Memory systems of the brain: a brief history and current perspective *Neurobiology of Learning and Memory* 82: 171 - 177

Tulvin, E (2002) Episodic memory: from mind to brain Annual Review of Psychology 53: 1 – 25

Moscovitch, M *et al* (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory *Journal of Anatomy* 207: 35

The first ideations of consolidation

Lechner, HA *et al* ((1999) 100 years of consolidation – remembering Muller and Pilzecker *Learn. Mem* 6: 77 - 87

Reconsolidation

Dudai, Y & Eisenberg, M. (2004) Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis *Neuron* 44: 93 - 100

Nader, K (2003) Memory traces unbound. *Trends Neurosci* 26: 65 – 72

Various models of retrieval

Passer, MW & Smith, RE (2001) Psychology Frontiers and Applications McGraw Hill (NY) p. 295

Schacter, D. (2001) The Seven Sins of Memory: How the Mind Forgets and Remembers Houghton Mifflin Co (NY) p. 15 - 17

Reconstructive retrieval models

Bahrick, HP (2000) Long-term maintenance of knowledge. In E. tulving and FIM Craik (eds.) *The Oxford Handbook of Memory* (p. 347 – 362) Oxford and New York; Oxford Press

Schacter, DL & Curran. T (2000) Memory without remembering and remembering without memory: implicit and false memories. In. M.S. Gazzaniga (Ed.) *Cognitive Neuroscience: a Reader* Malden, MA: Blackwell

Quintillian reference

Quintillian, 1st century BCE Institutio Oratorio Book XI, Kairos, Memory and Delivery 11.2 (Memory)

Retrieval systems move from reproductive to reconstructive models

Squire L & Kandel E (1999)

Memory Scientific American Press (NY) p. 74

Schacter, D. (2001) The Seven Sins of Memory: How the Mind Forgets and Remembers Houghton Mifflin Co (NY) p. 15 – 17

Daniel Offer's experiment

Offer, D. *et al* (2000) The altering of reported experiences *J. of Child & Adol Psych* 33: 6

Can remember 7 things, plus or minus two, for 30 seconds.

Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information *Psychol. Rev.* 63: 81 – 97

Maintenance rehearsal is good for working memory, and can extend the memory for lengths of time

Hilgard ER (1980) The trilogy of mind: cognition, affection and conation J. Hist. Behav. Sci 16: 107 - 117

Peterson, LR & Peterson MJ (1959) Short term retention of individual verbal items J. of Exp Psych 58: 193 - 198

Elaborative rehearsal is better for longterm memory

Gardiner JM, *et al* (19940 Maintenance rehearsal affects knowing, not remembering; elaborative rehearsal affects remembering, not knowing *Psychonomic Bulletin and Review* 1: 107 – 110

Thompson, CP et al (1996)

Autobiographical Memory: Remembering What and Remembering When Mahwah, MH, Lawrence Erlbaum

Ebbinghaus' forgetting curves

Ebbinghaus, H (1964) Memory: a contribution to experimental psychology (HJA Ruger & CE Bussenius, translators) Dover (NY)

Memory can take years to consolidate

Manns, JR T. *et al* (2003) Semantic memory and the human hippocampus *Neuron* 38: 127 - 133

Maviel, T. *et al* (2004) Sites of neocortical reorganization critical for remote spatial memory *Science* 305: 96 -99

Frankland, PW & Bontempi, B (2005) The organization of recent and remote memories *Nature Reviews Neuroscience* 6: 119 – 130

Deliberately space the repetitions and recall is much better

Wagner, A.D. *et al* (2000) Interactions between forms of memory: when priming hinders new learning *J. of Cognitive Neuroscience* 12: 52 -60

Repetitions built up slowly do not interfere with networks previously recruited to store information

LeDoux, J. (2002) Synaptic Self: Hwo Our Brains Become Who We Are Viking Press (NY) p.106 - 107

Wagner's distributed repetition experiments (two of them)

Wagner, A.D. *et al* (1998) Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity *Science* 281: 1188-1191

Wagner, A.D. *et al* (1999) When encoding yields remembering: Insights from event-related neuroimaging *Proceedings of the Royal Society of London* (Series B: Biological Sciences) 354: 1307-1324

Dan Schacter's quote

Schacter, D. (2001) The Seven Sins of Memory: How the Mind Forgets and Remembers Houghton Mifflin Co (NY) p. 48

Long Term Potentiation (early and late types) explained

Fields, RD (2005) Making Memories Stick Scientific American

Dudke, SM & Fields, RD (1999) Gene expression in hippocampal long-term potentiation *The Neuroscientist* 5: 275 -279

Synaptic and system level consolidation exist

Dudai, Y (2004) The neurobiology of consolidations, or how stable is the engram? *Ann Rev Psychol* 55: 51 – 86

Frankland, PW & Bontempi, B (2005) The organization of recent and remote memories Nature Reviews Neuroscience 6: 119 – 130 The hippocampus and cortex are connected

Eichenbaum, H. (2000) A cortical-hippocampal system for declarative memory *Nature Reviews Neuroscience* 1: 41 -50

Declarative memories may be stored in the same cortical systems that were involved in the initial processing

LeDoux, J. (2002) Synaptic Self: Hwo Our Brains Become Who We Are Viking Press (NY) p. 107

Squire L & Kandel E (1999) *Memory* Scientific American Press (NY) p. 13, 72 & 88

Memory moves from the hippocampus + cortex to the cortex alone

McClelland, JL *et al* (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionst models of learning and memory *Psycho. Rev* 102: 419 – 457

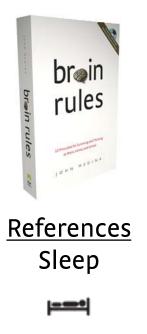
Manns, JR (2003) Semantic memory and the human hippocampus *Neuron* 38: 127 - 133

A review of H.M.

Corkin, S. (2002) What's new with the amnesic patient H.M.? *Nature Reviews Neuroscience* 3: 153 – 160 Interview with H.M.

Corkin, S. (2002) What's new with the amnesic patient H.M.? *Nature Reviews Neuroscience* 3: 157 – 158

Successive reactivations (repetitions) of the hippocampal-cortical interactions strengthens the memory trace


Eichenbaum, H. (2004) Hippocampus; cognitive processes and neural representations that underlie declarative memory *Neuron* 44: 109 – 120

Morris, RG, *et al* (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory *Philos. Trans. R. Soc. Lond. B. Biol Sci.* 358: 773 – 786

Squire LR et al (2004) The medial temporal lobe Ann Rev. Neurosci 27: 279 - 306

Dissatisfaction with undergraduate education

Terenzini. (2004) Research and practice in undergraduate education: and never the twain shall meet? *Higher Education* 38: 33 - 44

Fatal Familial Insomnia

Manetto, V *et al* (1992) Fatal familial insomnia: clinical and pathologic study of 5 new cases. *Neurology* 42: 312 - 319

"Resting" only 20% of the time

Rechtschaffen, A. (1998) Current perspectives on the function of sleep *Persp Biol and Medicine* **41**: 359 – 390

Smolensky, M and Lamberg L. (2000) *The Body Clock Guide to Better Health* Henry Holt & Co (NY) p. 71

Dement's idea of a battle

Dement, WC and Vaughan C. (2000) The Promise of Sleep Random House (NY) pp. 74 – 101

Kleitman's tendency to experiment on himself and his kids

"Nathaniel Kleitman, PhD, 1895 – 1999 August 16, 1999 in <u>http://www.uchospitals.edu/</u>

news/1999/19990816-kleitman.html

Kleitman, N (1963) Sleep and Wakefulness Univerfsity of Chicago Press (Chicago)

CAS, HSD and nobody ever wins the battle

Dijk, DJ (1996) Internal rhythms in humans Semin Cell Dev Biol 7: 831 – 836

Foster, R and Kreitzman L (2004) Rhythms of Life: the Biological Clocks that Control the Daily Lives of Every Living Thing Profile Books (London) pp. 177 – 200

Maimonides quote

Misheneh Torah Sefer Hamad, Hilchoth De'oth Ch IV: No.4: 1180 Translation by Arther Lesley, Baltimore Hebrew University, Baltimore, Maryland

The 8 hrs and 15 minutes quote

Weher, TA (1999) The impact of changes in nightlength (scotoperiod) on human sleep. In Turek, FW and Zee, PC eds *Regulation of Sleep and Circadian Rhythms* Macel Dekker (NY) pp. 263 – 285

Remarkable individuality, and sleep needs changing over time

Burns, ER (2000) Biological time and in vivo research: a field guide to pitfalls *Anat Rec* 261: 141 - 152 Ancoli-Israel, S. (1997) Sleep problems in older adults: putting myths to bed *Geriatrics* 52: 20 - 29

Webb, WB ((1970) Individual differences in sleep length Int Psychiatry Clin 7: 44 - 47

Dement, WC and Vaughan C. (2000) *The Promise of Sleep* Random House (NY) pp. 102 - 128

Inverting the question and six to seven hours of sleep needed

Foster, R and Kreitzman L (2004) Rhythms of Life: the Biological Clocks that Control the Daily Lives of Every Living Thing Profile Books (London) pp. 184 - 185

Larks and owls

Hall, EF et al (1997) Interval between wake time and circadian phase differs between morning and evening types Sleep Research 26: 716

Gale, G and Martin, C (1998) Larks and owls, and health, wealth, and wisdom *British Med J.* 317: 1675 - 1677

Larson, J et al (1991) Morning and night couples: the effect of wake and sleep patterns on marital adjustment J. Marital and Fam Therapy 17: 53 - 65

Smolensky, M and Lamberg L. (2000) *The Body Clock Guide to Better Health* Henry Holt & Co (NY) pp. 40 - 55

Duffy, J. et al (2001) Association of intrinsic circadian period with morningnesseveningness, usual wake time, and circadian phase Behav Neurosci 115: 895 ñ 899

Vink, JM et al (2001) Genetic analysis of morningness and eveningness *Chronobiol Int* 18: 809 - 822

Healthy insomniacs

Stuss, D and Broughton, R (1978) Extreme short sleep: personality profiles and a case study of sleep requirement *Waking Sleep* 2: 101 - 105

Famous insomniacs.

1. Jay Leno – four hours "He subsists on four hours' sleep per night. Out of fifty-two weeks, he gets four weeks off, during which time he is miserable. "I hate those weeks off," he tells me. "To me, a week's vacation just means you're now a week behind."

2. Madonna – four hours "Madonna has revealed she only grabs four hours' sleep a night because she constantly worries about everything that is going on her life." <u>http://news.bbc.co.uk/hi/</u> <u>english/entertainment/music/</u> <u>newsid_1420000/1420364.stm</u>

3. Florence Nightingale – four hours "Florence Nightingale only slept four hours a night" <u>http://www.soyouwanna.com/site/</u> syws/insomnia/insomnia.html

4. Anton Ballard – four hours "Ballard keeps pushing himself to get better. He averages around four hours of sleep per night, and works about 12 hours each day between his meat counter and his studio."

5. Michelangelo – four hours "Both aboriginal peoples and highly creative people (such as Thomas Edison and Michelangelo) rarely sleep for more than four hours at a time." <u>http://www.susunweed.com/Article_</u> <u>Anthrax_Interview.htm</u>

6. Napoleon Bonaparte – four hours "Napoleon Bonaparte learned to live with the fact that he was only existing on three or four hours sleep a night and got on with his grand schemes." <u>http://www.bbc.co.uk/dna/h2g2/</u> <u>alabaster/A294031</u>

7. Bill Clinton – five to six hours "President Clinton grabs 5-6 hours" http://www.powersleep.org/ sleepmatters.htm

8. Winston Churchill – six hours "It was claimed he only spent 6 hours in bed every night. However, he wrote that one needs to take a complete nap every afternoon, to get fully undressed and really go to bed. No "halfway measures". He claimed the reward was to "get two days in one - well, at least one and a half, I'm sure." He claimed this nap was absolutely necessary to cope with his responsibilities during the war. His naps were 1.5 to 2 hours long, for a total of about 8 hours a day!" http://www.mysleepcenter.com/ FamousSleepers.html

9. Nikola Tesla – two hours "He is said, by some of his followers, to only have slept 2 hours a day. He was definitely a night owl. But his staff has told of him taking many naps during the day. And it seems he may have been narcoleptic, and able to sleep with his eyes open." <u>http://www.mysleepcenter.com/</u> <u>FamousSleepers.html</u>

10. Leonardo Da Vinci – 15 mins every four hours (ie. 1.5 hours) "It was said that he would sleep just 15 minutes of every four hours." <u>http://www.mysleepcenter.com/</u> <u>FamousSleepers.html</u>

11. Margaret Thatcher – four hours "Margaret Thatcher, the former prime minister, was famous for getting by on only four hours a night."

http://www.theherald.co.uk/news/ archive/15-2-19102-0-37-6.html

12. Martha Stewart – four hours ""There's not enough time in the day," complains the woman who says she needs no more than four hours' sleep a night."

http://www.hellomagazine.com/ profiles/marthastewart/

13. Thomas Edison – four hours "Thomas Edison slept 3-4 hours at night, regarding sleep as a waste of time" <u>http://www.powersleep.org/</u>

<u>sleepmatters.htm</u>

Lyndon Johnson's habits (archived from the LBJ library, Austin, Tx)

www.lbjlib.utexas.edu/johnson/ archives.hom/oralhistory.hom/cater/ catero4.pdf

Randy Gardner's experiments with Bill Dement

Gulevich G. *et al* (1966) Psychiatric and EEG observations on a case of prolonged (264 hrs) wakefulness *Archives of General Psychiatry* 15: 29 - 35

Stress can confound effects of sleep

Siegel JM. *et al* (2003) Why We Sleep Scientific American November, 2003 p. 94

Sleep hurts cognition (general references)

Pilcher JJ and Juffcutt AJ (1996). *et al* (1966) Effects of sleep deprivation on performance: a meta-analysis *Sleep 19: 318 - 326 15: 29 - 35*

Van Donge, HP et al (2003) The cumulative cost of additional wakefulness; dose-response effects on neurobhehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation Slee 26: 117 - 126

Sleep has been extensively studied for combat operations

Combined Arms Combat Developments Activity (CACDA). Continuous Operations Study (CONOPS) Final Report. Fort Leavenworth, KS, CACDA, 1987.

A loss of 30 to 40% first night, 60% the next night.

Angus RG, Heslegrave RJ. (1985) Effects of sleep loss on sustained cognitive performance during a command and control simulation. *Behav Res Methods Instrum Comput* 17:55-67

Average sleep in the U.S.

1999 Omnibus Sleep in America Poll National Sleep Foundation Washington, D.C. (1999)

Suppose you are an "A" student, but then get average sleep loss

Passer, MW & Smith RE (2001) Psychology: Frontiers and Applications p. 193 - 194

Linkage of 4 – 5 hrs sleep deprivation to 48 hours total deprivation

Dinges DF *et al* (1997) Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night. Sleep 20: 267 - 277

Benoit O *et al* (1980) Habitual sleep length and patterns of recovery sleep after 24 hour and 36 hour sleep deprivation. *Electroencephogr Clin Neurophysiol* 50:477-485.

Sleep deprivation leads to energy loss

Spiegel K et al (1999) Impact of sleep debt on metabolic and endocrine function *Lancet* 354: 1435 - 1439

Randy Gardner's behavior

Coren, S (1998) Sleep deprivation, psychosis and mental efficiency *Psychiatric Times* 15:3

Mendeleev's behavior

Nelson, L. (2004) While You Were Sleeping *Nature* 430: 962 - 964

Finding the hidden algorithm

Wagner, U et al (2004) Sleep inspires insight Nature 427: 352 – 355

Mednick SC and Drummond S (2004) Sleep: a prescription for insight? Insom 3: 26 - 28

Sleep and memory, general considerations

Stickgold, R (2005) Sleep-dependent memory consolidation *Nature* 427: 1272 – 1278

The benefits of napping – the NASA study

Rosekind, M.R., et al (1994) Crew Factors in Flight Operations IX: Effects of Planned Cockpit Rest on Crew Performance and Alertness in Long-Haul Operations. NASA Technical Memorandum 108839. Moffett Field, CA: NASA Ames Research Center

General nap benefits

Dement, WC and Vaughan C. (2000) *The Promise of Sleep* Random House (NY) pp. 372 - 376

Married accountant

From The Best of Ann Landers

Autistic savant

VS Ramachandran The Phantoms in the Brain Harper Perennial (NY)

Sleep replay

Louie, K & Wilson, MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye-movement sleep *Neuron* 29: 149 ñ 156

Wilson, MA and McNaughton, BL (1993) Dynamics of the hippocampal ensemble code for space Skaggs, WE & McNaughton, BL (1996) Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience *Science* 271: 1870 - 1873

Sleep boost

Pihal, W & Born, J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory J. Cogn. Neurosci 9: 534 ñ 547

Stickgold, R (2005) Sleep-dependent memory consolidation *Nature* 437: 1272 ñ 1278

Sleep controversy

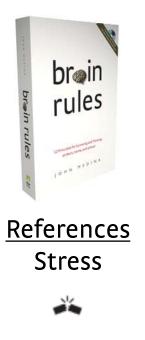
Siegel, JM (2005) The REM Sleep-memory consolidation hypothesis *Science* 294: 1058 - 1063

Siegel, JM (2005) Clues to the functions of mammalian sleep *Nature* 437: 1269

Stickgold, R (2005) Sleep-dependent memory consolidation *Nature* 437: 1273

Sleep needs in adolescence

Gau SF & Soong, WT (2003) The transition of sleep-wake patterns in early adolescence *Sleep* 26: 409 - 4103


Sleep needs in aging

Siegel, JM (2005) The REM Sleep-memory consolidation hypothesis Science 294: 1058 - 1063

Dement, WC and Vaughan C. (2000) The Promise of Sleep Random House (NY) pp. 119 – 124

Nap Day

http://www.bu.edu/phpbin/news/ releases/display.php?id=1085

•) Learned helplessness stories

For a thorough treatment of Seligman's work, see <u>http://www.</u> <u>ppc.sas.upenn.edu/</u>

Miller, W.R., Seligman, M.E.P., and Kurlander, H. (1975). Learned helplessness, depression, and anxiety. *Journal of Nervous and Mental Disease* 161: 347-357

•) Gamel(n)

Gutman, I. (1990) Encylcopedia of the Holocaust, 3rd edition Macmillan, (NY) p. 677

•) Stress can temporarily boost learning

McEwen, B. (2002) The End of Stress as We Know It Joseph Henry Press pp. 107 - 108

•) Physiological signatures of stress and pleasure are similar

Piazza, P. & Le Moal, M (1997) Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications *Brain Research Reviews* 25: 39

•) Jeansok Kim and David Diamond's three part definition of stress

Kim J.J. and Diamond, D (2002) The stressed hippocampus, synaptic plasticity and lost memories *Nature Reviews Neuroscience* 3: 4534 - 4562

•) General review on the physiology of stress responses

Carlson, NR. (2007) Physiology of Behavior Allyn & Bacon pp. 601 - 606

•) The brain evolved to solve problems in the short-term

Sterling, P. (2003) Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In Shulckin, J ed *Allostasts, Homeostasis, and the Costs of Adaptation* Cambridge MIT Press

•) Addison's disease (and other related dysfunction)

Raison, C and Miller A (2003) When not enough is too much: the role of insufficient glucocorticoid signaling in the pathphysiology of stress-related disorders *Am J Psych* 160: 1554

Nieman, LK *et al* (2006) Addison's disease *Clin Dermatol* 24: 393 - 411

•) The inverted U – cardiovascular responses

Rozanski, A *et al* (1991) Mental stress and the induction of myocardial ischemia in Brown *et al Stress: Neurobiology and Neuroendocrinology* Marcel Dekker (NY)

•) Increased susceptibility to infection

Cohen SW et al (1991) Psychological stress and susceptibility to the common cold *New England Journal of Medicine* 325: 606

Cohen SW and Doyle, W (1997) Social ties and susceptibility to the common cold Journal of the American Medical Association 277: 1940

 $\boldsymbol{\cdot}$) The inverted U – increased risk of stroke

May, M et al (2002) Does psychological distress predict the risk of ischemic stroke and transient ischemic attack *Stroke* 33: 7

•) The inverted U – immune responses

McEwen B *et al* (1997) The role of adrenocorticoids as modulators of immune function in health and disease; neural, endocrine and immune interactions *Brain Res Rev* 23: 79

Herbert, T & Cohen S (1993) Stress and immunity in humans: a meta-analytic review *Psychos Med* 55: 364

•) The inverted U – cognitive responses

Sapolsky R (2005) Stress and cognition in Gazzaniga M

ed *The Cognitive Neurosciences* 3rd ed Cambridge, MIT Press

•) 50% lower figure

Simon, H. (2005) (Harvard Medical School)

•) Stress hurts declarative memory (encoding and retrieval)

Sapolksy, R (2005) Stress and cognition in Gazzaniga, Me, ed, *The Cognitive Neurosciences*, 3rd ed (Cambridge, Mass: MIT Press)

Newcomer J *et al* (1999) Decreased memory performance in healthy humans induced by stresslevel cortisol treatment *Arch of Gen Psych* 56: 527 - 533

•) Stress hurts executive function

• Nonhuman primates

Arnsten, A (2000) Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanisms Progress in brain Res 126: 183 - 192

• Humans

Keinan, G *et al* (1999) The effect of stress on the suppression of erroneous competing responses *Anxiety, Stress & Coping: An International Journal* 12: 455 - 476

•) Chronic stress induces high levels of glucocorticoids. This results in damage to cognitive function. This has been shown in humans

Newcomer, J *et al* (1994) Glucocorticoid-induced impairment in declarative memory performance in adult humans J. of Neuro 2947 - 2053

•) BDNF protects against this damage

Radecki, DT *et al* (2005) BDNF protects against stressinduced impairments in spatial learning and memory and LTP *Hippocampus* 15: 246 - 253

#4) BDNF is brain fertilizer Hennigan A *et al* (2007) Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection *Biochem Soc Trans* 35 (pt 2): 424 - 427

•) BDNF is necessary for memory formation

Alonso, M et al (2002) BDNF-triggered events in the rat hippocampus are required for both short and long-term memory formation *Hippocampus* 12: 551 - 560

Kesslak JP *et al* (1998) Learning upregulates BDNF mRNA; a mechanism to facilitate encoding and circuit maintenance? *Behav Neurosci* 112 1012-1019

•) If BDNF is overwhelmed, its positive effects are negated. Glucos exert their negative effects in part by this by shutting down BDNF expression

Schaaf MJ *et al* (2000) Corticosterone effects on BDNF expression in the hippocampus. Implications for memory formation *Stress* 3: 201-208

•) Glucocorticoids cause neural damage

Wooley, et al (1990)

Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyrmaimdal neurons *Brain Research* 531: 225

•) Stress inhibits birth of new neurons

Gould, E and Grosss C (2002) Neurogenesis in adult mammals, some progress and problems J. of Neurosci 22: 619

#3) Stress can kill neurons outright in the hippocampus Sapolsky, R *et al* (1985) Prolonge corticoid exposure reduces hippocampal neuron number: implications for aging *J. of Neurosci* 5: 1221

•) Effects of stress on depression

Austin, M et al (2001) Cognitive effects in depression British J of Psychiatry 178: 200

•) Chronic stress can lead to depression

Tafet G & Berenardini, R (2003) Psychoneuroendocrinological links between chronic stress anddepression *Prog in Neuro Psych & Biol Psych* 27: 893

•) Story of Jill (resiliency in children)

Masten AS & Coatsworth JD (1998) The development of competence in favorable and unfavorable environments: lessons from research on successful children *Am Psych* 53: 205 – 220

Werner, EE & Smith RS (1982) Vulnerable but invincible: a longitudinal study of resilient children McGraw Hill (NY) •) Definition of Allostasis

McEwen, B. (2002) *The End of Stress as We Know It* Joseph Henry Press pp. 5 - 9

•) Children react negatively to unresolved marital conflict

Cummings, E. M., *et al* (2001). The study of relations between marital conflict and child adjustment: Challenges and new directions for methodology. In J. H. Grych & F. D. Fincham (Eds.), *Child development and interparental conflict* NY, NY: Cambridge University Press (pp. 39-63).

•) Divorce can predict academic failure

Mulholland DJ *et al* (1991) (first quote) Academic performance in children of divorce; psychological resilience and vulnerability *Psychiatry* 54(3): 28 – 280

• Amato PR (2001) Children of divorce in the 1990's: an update of the Amato and Keith (1991) meta-analysis J. Fam Psychol 15: 355 - 370

•) But it is really marital conflict that is the problem

Bryner, CL (2001) (second quote) Children of divorce JABFP 14(3):210 – 210

Kelly, JB (1998) Marital conflict, divorce and childrens' adjustment Child Adolesc Psychiatr Clin N Am 7: 389 – 407 Gottman, J. (1997) Raising an Emotionally Intelligent Child: the Heart of Parenting Simon & Schuster (NY) pp. 25, 145

•) Barbara Whitehead quote

Whitehead, B. (1993 Dan Quayle was right *The Atlantic Monthly*, April, 1993

•) Decrease in overall health of children in hostile emotional environs

Mauldon, J (1990) The effect of marital disruption on children's health *Demography* 27: 431 - 446

•) Increased risk for childhood psychiatric disorders

Thompson, P (1998) Adolescents from families of divorce: vulnerability to physiological and psychological disturbances J. Psychosoc Nurs Ment Health Serv 36: 34 - 39

•) Stress and illness

Maseda, M Healthy, stress-free workplace benefits employees, bottom line *Houston Business Journal*, Sept 3, 2004

Bourne, LE and Yaroush, RA (2003) Stress and cognition: a cognitive psychological perspective NASA Technical Reports

•) Stress behind half of the 550 million working days lost

"Work-life experts launch new webbased training to help employers battle the costs of stress and build a resilient workforce" http://www.hr.com/servlets/sfs?t=/ contentManager/onStory&e=UTF-8&i=1116423256281&l=0&Par entID=1170434234858&StoryI D=1139067747063

•) CDC asserts that 80% of our medical expenditures are stress related.

Fast Company Magazine, p. 88 February 2, 2003

•) 77% of the workforce reports being burned out

"Once Again, Treatment Improves Productivity" American Psychiatric Association/ American Psychiatric Foundation, *MentalHealthWorks*, Third Quarter, 2003

•) Effects of depression on bottom line (\$53 billion)

Russell JM et al (1998) Disease Management and Health Outcomes 4(3): 135 - 142

•) Final tally is \$200 to \$300 billion per year

Priority Magazine January 2, 2007 National Safety Council Report, quoted in Key Organization Systems, Inc, <u>www.keyorganization.</u> <u>com/statistics.asp</u>

American Psychological Association, quoted in Wellbeing Lifestyles, Inc.

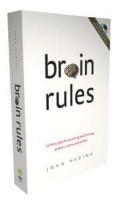
•) Two malignant facts

Sapolsky, R (2004) • Why Zebras Don't Get Ulcers, Owl Books (3rd Edition) p. 262 •) Stress management program

Simon, H. (2005) (Harvard Medical School)

•) Initially, most people thought divorced kids could recover quickly, but that is not true.

Wallterstein, Js & Blakeslee, S. (1989) Second chances: men, women and children a decade after divorce Ticknor & Fields (NY)


The following data from Gottman and references therein.

Gottman, J. (1997) Raising an Emotionally Intelligent Child: the Heart of Parenting Simon & Schuster (NY)

• When a couple constantly fights, their conflict gets in the way of their child's ability to form friendships. Gottman, p. 25.

• Parents displaying constant hostility create kids with more antisocial behavior and aggression towards their playmates. There is more stress hormone in urine. They have more difficulty regulating their emotions, focusing attention and soothing themselves when they become upset. Gottman, p. 139

• Children whose parents were distressed in their marriages played less collaboratively and had more negative interactions with their playmates than children whose parents were happily married. Gottman, p. 140

References Sensory integration

ሪ

•) James the synesthete

Hubbard, EM & Ramachandran, VS (2005) Neurocognitive mechanisms of synesthesia *Neuron* 48: 509 - 520

•) Aristotle's ideas of a vital flame

Hunter, WB (1950) The Seventeenth Century Doctrine of Plastic Nature *The Harvard Theological Review* 43(3): 197 - 213

www.pacs.unica.it/biblio/lesson1. htm

•) The common definitions of sensation and perception are found in textbooks in many universities. I used two old standards, *Principles of Neural Science*, 4th edition, and *Psychology: Frontiers and Applications*

•) Four attributes of a given stimulus

Gardner, EP & Martin, JH (2000) Coding of Sensory Information In Principles of Neural Science, 4th edition, ER Kandel *et al*, eds) McGraw Hill (NY) pp. 412 - 418

•) All sensory information has a common plan

Gardner, EP & Martin, JH (2000) Coding of Sensory Information In Principles of Neural Science, 4th edition, ER Kandel *et al*, eds) McGraw Hill (NY) pp. 425 – 429

•) Absolute thresholds for various senses

Galanter *et al*, (1962) as quoted in Passer, MW & Smith RE (2001) Sensation and Perception in *Psychology: Frontiers and Applications* McGraw Hill (NY)

p. 134

•) Bottom-up and top-down processing

Passer, MW & Smith RE (2001) Sensation and Perception in Psychology: Frontiers and Applications McGraw Hill (NY) pp. 157 - 159

•) Known for more than 150 years

Weber, EH (1846) Der Tastsinn und das Gemeingefuhl. In: R. Wagner (ed.) *Handworterbuch der Physiologie*, 3(2): 481 – 588, 709 – 728 Braunschweig; Vieweg

•) Somerset Maugham quote

Morgan, Ted (1984) *Maugham* Touchstone Books NY?)

•) Slow effort, reading being inefficient.

Pelli, DG, Farell, B & Moore, DC

(2005) The remarkable inefficiency of word recognition *Nature* 423: 752 - 756

•) General review of the thalamus and information processing

Jones EG (2006) *The Thalamus Revisited* Cambridge University Press Cambridge, UK

•) Olfaction skips the thalamus

Gottfried JA *et al* (2004) Remembrance of odors past: human olfactory cortex in cross-modal recognition memory *Neuron* 42: 687 - 695

•) Detailed explanations of how animals sense their environment

Hughes, Howard (1999) Sensory Exotica: A World Beyond Human Experience Bradford Books. MIT Press (Cambridge, Massachusetts)

•) European robin story

Wiltschko, W et al (2002) Lateralization of magnetic compass orientation in a migratory bird *Nature* 419(6906):467-47

•) Dr. Richard's story Sacks, O (1986) The Man Who Mistook His Wife for a Hat and other clinical tales Summit Books and Simon & Schuster (NY) p. 76

•) Long time thought that the information streams went from unisensory, fully processed, then to multisensory

Fellemena, DJ & Van Essen, DC

(1991)

Distributed hierarchical processing in the primate cerebral cortex *Cereb. Cortex* 1: 1 - 47

•) The need to amend the above story

Kayser, C et al (2005) Integration of touch and sound in auditory cortex *Neuron* 48: 373 - 384

•) Association cortex defined

Goldman-Rakic, PS (1988) Topography of cognition: parallel distributed networks in primate association cortex Ann Rev of Neurosci 11: 137 - 156

•) Synesthesia, taste

Simner, J and Ward J (2006) The taste of words on the tip of the tongue *Nature* 444:238

•) Multisensory presentations make for more robust learning

Najjar, LJ (1997) The effects of multimedia and elaborative encoding on learning (GIT-GVU-95-29)Atlanta, GA: Georgia Institute of Technology, Graphics, Visualizaiton and Usability Center.

Laurienti, PJ *et al* (2004) Semantic congruence is a critical factor in multisensory behavioral performance *Exp Brain Res* 10.1007/s00221-004-1913-3

•) 20 years later, still a benefit

Read, JD & Barnsley, RH (1977) Remmeber Dick and Jane? Memory for elementary school readers Canadian J. of Behav Sci 9: 361 - 370

•) Multisensory presentations make for more robust problem-solving (50% and 75% figures)

Mayer, RE (1997) Multimedia learning: are we asking the right questions? Educ Psych 32(1): 1 - 19

•) Multisensory presentations create better reaction times

Forster B et al (2002) Redundant target effect and intersnesoyr facilitation from visualtattile interactions in simple reaction time *Exp Brain Res* 143: 480 - 487

•) Multisensory presentations shorten eye movement latency

Harrington LK & Peck CK (1998) Spatial disparity affects visualauditory interactions in human sensorimotor processing *Exp Brain Res* 122: 247 - 252

•) Multisensory presentations lowers the thresholds for stimulus detection

Lovelace CT *et al* (2003) An irrelevant light enchances auditory dtection in humans: a psychophysical analysis of multisensory integration in stimulus detection *Brain REs Cogn Brain Res* 17: 447 - 453

•) Neural processing of speech is improved when the speaker's face is visible

van Wassenhove V et al (2005) Visual speech speeds up the neural processing auditory speech *PNAS* 102: 1181 - 1186

•) The notion of supra-additivity

Kayser, C *et al* (2005) Integration of touch and sound in auditory cortex *Neuron* 48: 378 - 384

•) Haptic responses

Newell, FN *et al* (2002) Cross-modal perception of actively explored objects *Max Planck Institute for Biological Cybernetics, Conf Proc* (Oakley, I ed) pp. 291 - 299

•) Passive vs. active

Hughes, HC (19991) Sensory Exotica The MIT Press (Cambridge, Massachusetts) p. 235

EXPLANATIONS

•) Squires quote

Squire L & Kandel E (1999) *Memory* Scientific American Press (NY) p. 71

•) Elaborative encoding's positive effects on learning

Pressley, M *et al* (1987) Generation and precision of elaboration: effets on intentional and incidental learning *J. of Exp Psych: Learning and Cognition* 13: 291 -300

•) Other scientists think that multimedia encourages elaboration

Nelson DL (1979) Remembering pictures and words: apperance,significance, and name. In L.S. Cermak & F.I.M. Craik (Eds.) *Levels of processing in human memory* Mahwa, NJ: Erlbaurm pp. 45 -76

Najjar, LJ (1997) A framework for learning from media: the effects of materials, tasks, and tests on performance (GIT-GVU-97-21)Atlanta, GA: Georgia Institute of Technology, Graphics, Visualizaiton and Usability Center. Also vailable http://www/cc/ gatecj/ediu/gvu/re[pprts

•) Five principles of multi-media learning

Mayer, R. (2001) Multimedia Learning Cambridge University Press Cambridge, UK pp. 63-147

•) Principle #4 – the idea of interference

Peterson LR & Peterson, MJ (1959) Short term retention of individual verbal items J. of Exp Psych 58: 193 – 198

•) Limited capacity of visual spatial sketchpad

Vogel, EK & Machizawa, MG Neural activity predicts individual differences in working memory capacity *Nature* 428: 748 -751

•) The brain sees words as "pictures"

Pelli, DG, Farell, B & Moore, DC (2005) The remarkable inefficiency of word recognition *Nature* 423: 752 - 756

•) Memory boost twice as much with smell (and age independent)

Maylor EA *et al* (2002) Preserved olfactory cuing of autobiographical memories in old age J. Gerontol B Psychol Sci Soc Sci 57: P41 – 46

•) Memory boost at 20% for smell

Carter, R. (1999) *Mapping the Mind* University of California Press (Berkeley) pp. 112 - 115

•) Memory boost at 10% for smell

Wilson, DA & Stevenson, RJ (1999) *Learning to Smell* Johns Hopkins University Press (Baltimore) pp. 112 - 115

•) Autobiographical memory boost

Cu S & Downes JJ (2000) Long live Proust: the odourcued autobiographical memory bump *Cognition* 75: B41 – 50

•) Declarative memory shows a boost if the subjects are pre-aroused

Herz RS (1997) Emotion experienced during encoding enhances odor retrieval cue effectiveness *Am J Psychol* 110: 489 - 505

•) Emotional details memory boost

Are odors the best cues to memory? A cross-modal comparison of associative memory stimuli *Ann NY Acad Sci* 855: 670 - 674

•) Need for congruent smells

Herz RS & Cupchik GC (1995)

The emotional distinctiveness of odor-evoked memories *Chem Senses* 20: 51 - 528

•) Need for emotional pre-arousal to capture declarative memory Herz RS (1997) Emotion experienced during encoding enhances odor retrieval cue effectiveness *Am J Psychol* 110: 489 – 505

•) Shereshevskii stories

Luria, AR (1987) The Mind of a Mnemonist: a Little Book About a Vast Memory Harvard Univ Press p. 31 & p. 82

•) Synesthetes may have advanced mental abilitites

Cytowie, RC (2004) The Synesthesia Encyclopedia Encyclopedia of Neuroscience, 3rd edition (eds Adelman, G and Smith BH) Elsevier Science Publishing BV (NY)

•) Effects of smell on the bottom line. The van Epps research on chocolate sales and ice cream parlos sales with a odorant generating device

Lempert P (2005) Sensory branding possibly the most effective marketing tool yet? *Extreme Retail 23 (XR23)* Sept 22, 2005

•) The sleep and smell experiment

Rasch, B *et al* (2007) Odor cues during slow-wve sleep prompt declarative memory consolidaiton *Science* 315: 1426 - 1429

•) Recommendations for smell


branding

Tischler, L (2007) Smells Like Brand Spirit http://www.fastcompany.com/ magazine/97/brand-spirit.html

De Asis, KV (2003) Use smell to build a brand experience *Philipine Daily Inquirer Business Features* section (better ref)

•) Eric Spangenberg data and quote (the peer review article has been accepted for publication in the Journal of Business Research, 2007). The quotes are from

Trivedi, B. (2006) The Hard Smell *New Scientist*, Dec 15, 2006

•) Wine tasting experiment

Gottfried J & Dolan R (2003) The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception *Neuron* 39: 375 - 386

Morrot, G *et al* (2001) The color of odors *Brain & Lang* 79: 309 - 320

• Information about the visual system can be found in a variety of textbooks. Three I used a lot:

Carlson, NR (2007) Physiology of Behavior (Ninth Edition) Pearson (NY) pp. 168 - 209

Wolfe, JM et al (2006 Sensation and Perception Sinauer Assoc, Inc (Baltimore, Md) pp. 76 - 154

Principles of Neural Science, $4^{\rm th}$ edition

•) "Movies" and the retina

Roska, B *et al* (2006) Parallel processing in retinal ganglion cells: how integraiotn of space-time patterns of excitiation and inhibition form the spiking output *J. Neurophys* 95: 3810 - 3822

Fried, SI *et al* (2005) Directional selectivity is formed at multiple levels by laterally offset inhibition in the rabbit retina *Neuron* 46: 117 - 127

•) Motion blindness story

Ramachandran, VS & Blakeslee, S (1998) *Phantoms in the Brain* HarperCollins (NY) p. 72

•) Blind spot description

Komatsu, H. (2006) The neural mechanisms of perceptual filling-in *Nature Reviews Neuroscience* 7: 220 - 231

•) Charles Bonet syndrome

Ramachandran, VS & Blakeslee, S (1998) Phantoms in the Brain HarperCollins (NY) p. 72

Plummer, C (2007) Of Roman Chariots and goats in overcoats: the syndrome of Charles Bonnet J. Clin Neurosci Apr 9 (in press at time of writing)

Menkhaus, S et al (2003) Charles-Bonnet Syndrome *Ophthalmologe* 100: 736 - 739

•) Interpolating binocular images

Poggio GF & Poggio T (1984) The analysis of stereopsis Ann Reve of Neurosci 7: 379 - 412

Devlin, K. (2005) *The Math Instinct* Thunder's Mouth Press (NY) pp. 128 - 132

•) Interpolating binocular images

Poggio GF & Poggio T (1984) The analysis of stereopsis Ann Reve of Neurosci 7: 379 - 412

•) We can hold about 4 objects in visual working memory, though object complexity is a confounder.

Narain, C (2006) Total Recall *Nat Neurosci* 9: 302

Xu, Y & Chun, MM C (2006) Dissociable neural mechanisms supporting visual short-term memory for objects *Nature* 440: 91 - 95

•) Recognition for 2,500 pictures

Standing, L et al (1970) Perception and memory for pictures - single-trial learning of 2,500 visual stimuli *Psychon. Sci* 19: 73 - 74

•) 63% accuracy a year later Nickerson, RS (1968) A note on long-term recognition memory for pictorial material *Psychon. Sci* 11(2): 58

•) Still recognizable 3 decades later

Read JD & Barnsley RH (1977) Remember Dick & Jane? Memory for elementary school readers *Canadian Journal of Behavioral Science* 9(4): 361 - 370 •) Pictures better than words

Stenberg, G (2006) Conceptual and pereptual factors in the picture superiority effect *Eur J. of Cog Psych* 18(6): 813 - 847

Endestad, T et al (2003) Memory for pictures and words following literal and metaphorical decisions *Imagination, Cognition and Personality* 23 (2,3): 209 - 216

McBride, DM & Dosher, AB (2002) A comparison of conscious and automatic memory processes for picture and word stimuli: a process dissociation analysis *Cons Cogn* 11(3): 423 -460

•) Identifying letters as opposed to individual words

Pelli, DG et al (2003) The remarkable inefficiency of word recognition *Nature* 423: 752 - 756

•) All references to infant information processing

Gopnik, A.et al (2000) The Scientist in the Crib William Morrow

•) Olfactory genes and color vision

Holden, C (quoting N Dominy) (2004) An Eye for a Nose *Science* 303: 621

Gilad, Y. *et al* (2004) Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates *PloS Biol* 2: E5

•) Olfactory genes and four-fold rate over any other creature

Gilad, Y *et al* (2003) Human specific loss of olfactory receptor genes *Proc Natl Acad Sci USA* 100: 3324 -3327

•) Animation and graphics references

Najjar, LJ Principles from the Behavioral and Cognitive Sciences Educational Technology Publications, Englewood, Cliffs (NJ), pp. 55 - 126

Najjar, LJ (1998) Principles of educational multimedia user interface design *Human Factors* 40(2): 311 - 323

•) The characteristics of the learning materials can significantly affect how people learn things

Bransford, JD (1978) Contextual prerequisites for understanding: some investigation of comprehension and recalls J Verb Learn & Verb Behav 11: 717 – 726

•) Limited evidence suggests that some media are better at communicating some types of information than others

Nugent, GC (1982) Pictures, audio and print: symbolic representation and effect on learning *Educ Com & Tech J*.30: 163 – 167

PSE gets wiped out if the pictures are too conceptually similar Nelson, DL (1979) Pictorial superiority effect. *J of Exp Psych: Hum Learning & Memory* 2: 523 – 528

•) Pictures seem to work best for

people who do not have a lot of background (are naïve learners) or are of low aptitude. This seems to be true of all ages and a broad variety of students.

- automobile mechanics (college age) Mayer, RE & Gallini, JK (When is a picture worth a thousand words? J. of Educ Psych 82: 715 - 726

- natural science (fifth graders) Kraft ME (1961) A study of information and vocabulary achievement from teaching of natural science by television in the fifth grade Unpublished dissertation, Boston University

- basic training information to army recruits (high school) Kanner JM & Rosenstein, AJ (1990) Television in army training: color vs. black and white AV Comm Rev 8: 243 - 252

•) Pictures seem to work better for older audiences than younger audiences. Seven year olds did better than three year olds. Adults did better than seven year olds.

- Shown with TV commercials Stoneman, Z & Brodyg GH (1983) Immediate and long-term recognition and generalization of advertised products as a function of age and presentation mode *Dev Psych* 19: 56 - 61

- Shown with picture recognition Hoffman CD & Dick SA (1976) A developmental investigation of recognition memory *Child Dev* 47: 794 - 799

•) Print media research

Pieters, R & Wedel, M. (2004)

Attention capture and transfer in advertising: brand, pictorial, and text-size effects J. of Marketing 68(2): 36 -50

•) Tufte references

Shermer, M (2005) The Feynman-Tufte Principle *Scientific American*, April, 2005 p. 38

Tufte, E (2003) PowerPoint is Evil *Wired* 11(9): September, 2003

•) PowerPoint history and facts

Park, I (2001) Absolute PowerPoint *New Yorker*, May 28, 2001 p. 76

•) Go-getters: men vs. women

Heilman, ME *et al* (2004) Penalties for success: reactions to women who succeed at male gendertyped tasks *J. Appl Psych* 89(3): 416 – 427

•) Primed vs. non-primed groups

Rudman, LA & Bergida E (1995) The afterglow of construct accessibility: the behavioral consequences of priming men to view women as sexual objects *J of Exp Soc Psych* 31: 493 - 517

•) SRY gene

Cotinot C *et al* (2002) Molecular genetics of sex determination. Semin Reprod Med. 2002 Aug;20(3):157-68. Review

Jordan BK & Vilain E (2002) Sry and the genetics of sex determination *Adv Exp Med Biol* 511: 1 - 13

•) The Y-chromosome

Tilford, CA *et al* (2001) A physical map of the human Y chromosome Nature 409: 943 - 945

Repping, S *et al* (2006) High mutaiton rates have driven extensive structural polymorphisms among human Y chromosomes *Nat Genet* 38: 463 - 467

•) X-inactivation references

Carrel L & Huntington FW (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females *Nature* 434: 400 - 404

Ogawa Y & Lee, JT (2003) Xite, X-inactivation intergenic transcription elements that regulate the probability of choice *Molecular Cell* 11: 135 - 143

•) Many X-genes are involved in brain development

Check, E. (2005) The X-factor Nature 434: 266 - 267

Ross, MT *et al* (2005) The DNA sequence of the human X-chromosome *Nature* 434: 325 – 337

Arnold AP & Burgoyne PS (2004) Are XX and XY brain cells intrinsically different? *Trends Endocrinol Metab.* Jan-Feb;15(1):6-11.

•) Many X-genes are involved in brain development and cognition

Zechner U *et al* (2001) A high density of X-linked genes for general cognitive ability: a runaway process shaping human evolution? *Trends Genet* 17: 697 - 701

Skuse, DH (2006)

Sexual dimorphism in cognition and behavior: the role of X-linked genes *Eur J. of Endocrin* 155: 99 – 106

Loat CS, *et al* (2004) Inactivation as a source of behavioral differences in monozygotic female twins. *Twin Research* 2004 **7** 54ñ6

•) Neuroanatomy – cortex (Jill Goldstein's work)

Goldstein, JM *et al* (2001) Normal sexual dimorphism of eh adult human brain assessed *by in vivo* magnetic resonance imaging *Cerebral Cortex* 11: 490 - 497

•) Neuroanatomy – PFC impairment

Tranel, D. *et al* (2005) Does gender play a role in functional asymmetry of ventromedial prefrontal cortex? *Brain* 128: 2873 - 2881

•) Neuroanatomy – greater density of speech-related cortical neurons

Witelson SF *et al* (1995) Women have greater density of neurons in posterior temporal cortex *J. Neurosci* 15: 3418 – 3428

•) Witelson and Einstein's brain

Witelson, SF et al (1999) The exceptional brain of Albert Einstein *The Lancet* 353: 2152 - 2153

•) Neuroanatomy - the amygdala

Goldstein, JM *et al* (2001) Normal sexual dimorphism of eh adult human brain assessed *by in vivo* magnetic resonance imaging *Cerebral Cortex* 11: 490 - 497 •) Neuroanatomy – the amygdala's connections to other regions

Kipatrick, LA *et al* (2006) Sex-related differences in amygdala functional connectivity during resting conditions *Neuroimage* 30: 452 - 461

•) Neurotransmitters – other systems

Cahill, L (2006) Why sex matters for neuroscience *Nat Rev Neuro* 7: 477 - 484

•) Neurotransmitters - serotonin

Nishizawa, S. *et al* (1997) Differences between males and females in rates of serotonin synthesis in human brain *PNAS* 94: 5308 - 5313

•) Neurotransmitters – opioids

Zubieta JK, S. *et al* (1997) Gender and age influences on human brain mu-opioid receptor binding measured by PET *Am. J Psych* 156: 842 - 848

•) Neurotransmitters – addiction differences

Holden, C. (2006) Males on speed Science 312: 1287

•) X-linked mental retardation of 24 genes on the X chromosome.

X-linked mental retardation: a clinical guide Raymond, FL (2006) *J. Med Genet* 43: 193 – 200

•) Various statistics on psychiatric disorders

Holden, C (2005) Sex and the suffering brain *Science* 308: 1574 - 1577

Cyranowski, JM *et al* (2000) Adolescent onset of the gender difference in lifetime rates of major depression *Arch Gen Psych* 57: 21 - 27

•) Larry Cahill's work

Cahill L et al (2004) Sex-related hemispheric lateralization of amygdala function in emotionally influenced memory: an fMRI investigation Learn Mem 11(3): 261 - 266

Cahill L et al (2004) The influence of sex versus sexrelated traits on long-term memory for gist and detail from an emotional story *Conscious Cogn* 13(2): 391 – 400

•) Women and men differences, gist vs detail in memory and real world settings

Canli, Turhan *et al* (2004) Sex differences in the neural basis of emotional memories *PNAS* 99(16): 10789 - 10794

•) Various other differences, relationship to amygdala

Her RS & Cupchick GC (1992) Women recall more emotional autobiographical events than men in timed tests *Chem. Senses* 17: 519 - 528

Ross, M. & Holmberg, D. (1990). Recounting the past: Gender differences in the recall of events in the history of a closer relationship. In J. M. Olson & M. P. Zanna (Eds.), Self-inference processes: The Ontario Symposium, Vol. 6. Hillsdale, NJ: Erlbaum. [Reprinted in U. Neisser & I. E. Hyman (Eds.) (2000), *Memory observed* (2nd Ed.). New York: Worth.]

McGlone, J (1980) Sex differences in human brain organization: a critical survey *Behav Brain Sci* 3: 215 - 227

•) Differences in reading disabilities

Flannery, KA *et al* (2000) Male prevalence for reading disability is found in a large sample of black and white children free from ascertainment bias J. Int Neuropsyh 6: 433 - 442

•) Differences in verbal recovery in stroke patients

McGlone, J (1980) Sex differences in human brain organization: a critical survey *Behav Brain Sci* 3: 215 - 227

•) Differences in the corpus callosum

HiscockM. et al (1995) Is there a sex difference in human laterality? II. An exhaustive survey of visual laterality studies from six neuropsychology journals.

J ClinExp Neuropsychol. 17(4), 590-610

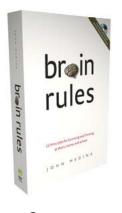
•) Suggestion that this bilaterality represents a back-up system to explain gender differences

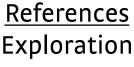
Gur, RC et al (2000) An fMRI study of sex differences in regional activation to a verbal and a spatial task *Brain Lang* 74: 157 – 170

•) Little girls better at verbal tasks than little boys

Kimura D.(2000) Sex and Cognition MIT Press (Cambridge, MA) pp. 91 – 105

•) Deborah Tannen references


Tannen, D (1999) The Display of (Gendered) Identities in Talk at Work *Reinventing Identities: The Gendered Self in Discourse*, ed. by Mary Bucholtz, A. C. Liang, and Laurel A. Sutton, pp. 221- 240. New York: Oxford University Press


Tannen, D (1997) Conversational Patterns Across Gender, Class, and Ethnicity: Implications for Classroom Discourse." *Encyclopedia of Language and Education, Vol. 3, Oral Discourse and Education, ed.* by Bronwyn Davies and David Corson, 75-85. Dordrecht, The Netherlands: Kluwer, 1997 (with Shari Kendall and Carolyn Temple Adger)

Tannen, D (1996) Researching Gender-Related Patterns in Classroom Discourse *TESOL Quarterly* 30:2(1996).341-344

•) Larry Summers comment

Barres, Ben (2005) Arrogance imperils plans for a change at Harvard *Nature* 434: 697

•) Tabula rasa

Todd, James T., & Morris, Edward K. (1994) Modern Perspectives on John B. Watson and Classical Behaviorism. Greenwood Press

•) Infants are born with a variety of pre-loaded software

Quinn PC and Eimas PD (1996) Perceptual categorization in young infants. In *Advances in infancy research* Rovee-Collier, C and Lipsitt LP Vol 10 (Ablex Press, Norwood, NJ) p. 1 - 36

Premack, D and Premack A. (2003) Modules: the New Infant in Original Intelligence (McGraw-Hill, New York) p. 1 - 36

Quinn PC and Eimas PD (1996) Perceptual categorization in young infants. In Advances in infancy research Rovee-Collier, C and Lipsitt LP Vol 10 (Ablex Press, Norwood, NJ)

p. 1 – 36

Muir DW and Hains SMJ (1993) Infant sensitivity to perturbations in adult facial, vocal, tactile, and contingent stimulation during faceto-face interactions. In *Development Neurocognition: Speech and Face Processing in the First Year of Life* (ed Boysson-Bardies et al, Dordrecht, Netherlands: Kluwer) p. 171 - 185

•) Babies are born with a deep desire to know their world, curiosity

Gopnik, A.et al (2000) The Scientist in the Crib William Morrow, NY p. 60 – 75; p. 85 – 91

Keil, FC & Wilson, R (1998) Cognition and explanation *Minds and Machines* 8: 1 (special issue)

Gopnik, A (1998) Explanation as orgasm *Minds and Machines* 8: 101 - 118 (special issue)

•) Babies are born with a preoccupation with objects

Wellman, HM and Gelman SA (1992) Cognitive development: foundational theories of core domains Ann Rev Psych 43: 337 - 375

•) The "rake" experiment

Gopnik, A & Meltzoff, A (1992) Categorization and Naiming: basiclevel sorting in eighteen month olds and its relation to language Child Dev 63: 1091 - 1103

Uzgaris, IC & Hunt, JM (1975) Assesment in infancy: ordinal scales of psychological development Urbana: University of Illinoniois Press •) Children learn like scientists, through a series of increasingly corrected ideas, hypothesis testing

Slaughter, V & Gopnik A. (1996) Conceptual coherence I the child's theory of mind" training children to understand belief *Child Dev* 67: 2967 - 2988

Gopnik, A. (1996) The scientist as child *Phil of Sci* 63: 485 - 514

•) Babies imitate

Meltzoff, AN and Moore MK (1983) Newborn infants imitate adult facial gestures *Child Development* 54: 702 - 709

•) Object permanence development

Spelke, ES and Newport EL (1998) Nativism, empiricism, and the development of knowledge. In *Handbook of child psychology* in W. Damon, Vol 1, *Theoretical models of human development* (ed. RM Lerner, Wiley, New York) p. 275 – 340

Munakata, Y. et al (1997) Rethinking infant knowledge: toward an adaptive process account of successes and failures in object permanence tasks *Psychological Reviews* 104: 686 – 713

•) How to view the terrible twos

Repacholi BM & Gopnik A (1997) Early reasoning about desires: evidence from 14 and 18 month olds *Dev Psych* 33: 12 - 21

•) Mirror neurons, their various uses

Rizzolatti G & Craighero L The mirror-neuron system Ann Rev Neurosci 27: 169 - 192

BRAIN RULES by JOHN MEDINA ~ References ~ 38

Gallese V et al (2003) Action recognition in the premotor cortex *Brain* 119: 593 - 609

•) Fischer & Krebs Nobel Prize

Blum, ME (1992) Nobel prize for medicine, 1992 Dtsch Med Wochenschr 117: 1935 -1938

•) Adult brains can still regenerate neurons

Jacobs, W et al (2003) The molecular basis of neural regeneration *Neurosurgery* 53: 943 - 950